1
|
Valleix R, Zhang W, Jordan AJ, Guillemeney L, Castro LG, Zekarias BL, Park SV, Wang O, Owen JS. Metal Fluorides Passivate II-VI and III-V Quantum Dots. NANO LETTERS 2024; 24:5722-5728. [PMID: 38712788 DOI: 10.1021/acs.nanolett.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantum dots (QDs) with metal fluoride surface ligands were prepared via reaction with anhydrous oleylammonium fluoride. Carboxylate terminated II-VI QDs underwent carboxylate for fluoride exchange, while InP QDs underwent photochemical acidolysis yielding oleylamine, PH3, and InF3. The final photoluminescence quantum yield (PLQY) reached 83% for InP and near unity for core-shell QDs. Core-only CdS QDs showed dramatic improvements in PLQY, but only after exposure to air. Following etching, the InP QDs were bound by oleylamine ligands that were characterized by the frequency and breadth of the corresponding ν(N-H) bands in the infrared absorption spectrum. The fluoride content (1.6-9.2 nm-2) was measured by titration with chlorotrimethylsilane and compared with the oleylamine content (2.3-5.1 nm-2) supporting the formation of densely covered surfaces. The influence of metal fluoride adsorption on the air stability of QDs is discussed.
Collapse
Affiliation(s)
- Rodolphe Valleix
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - William Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abraham J Jordan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lilian Guillemeney
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - Leslie G Castro
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Bereket L Zekarias
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sungho V Park
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Oliver Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Green PB, Segura Lecina O, Albertini PP, Newton MA, Kumar K, Boulanger C, Leemans J, Thompson PBJ, Loiudice A, Buonsanti R. Colloidal Atomic Layer Deposition on Nanocrystals Using Ligand-Modified Precursors. J Am Chem Soc 2024; 146:10708-10715. [PMID: 38579275 DOI: 10.1021/jacs.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Atomic layer deposition (ALD) is a method to grow thin metal oxide layers on a variety of materials for applications spanning from electronics to catalysis. Extending ALD to colloidally stable nanocrystals promises to combine the benefits of thin metal oxide coatings with the solution processability of the nanocrystals. However, challenges persist in applying this method, which relate to finding precursors that promote the growth of the metal oxide while preserving colloidal stability throughout the process. Herein, we introduce a colloidal ALD method to coat nanocrystals with amorphous metal oxide shells using metal and oxygen precursors that act as colloidal stabilizing ligands. Our scheme involves metal-amide precursors modified with solubilizing groups and oleic acid as the oxygen source. The growth of the oxide is self-limiting and proceeds in a layer-by-layer fashion. Our protocol is generalizable and intrinsically scalable. Potential applications in display, light detection, and catalysis are envisioned.
Collapse
Affiliation(s)
- Philippe B Green
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Ona Segura Lecina
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Petru P Albertini
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Krishna Kumar
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Coline Boulanger
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Jari Leemans
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Paul B J Thompson
- XMaS beamline, United Kingdom CRG, European Synchrotron Radiation Facility, 71, avenue des Martyrs, CS 40220, Grenoble Cedex 9 38043, France
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
3
|
Harvey SM, Olshansky JH, Li A, Panuganti S, Kanatzidis MG, Hupp JT, Wasielewski MR, Schaller RD. Ligand Desorption and Fragmentation in Oleate-Capped CdSe Nanocrystals under High-Intensity Photoexcitation. J Am Chem Soc 2024; 146:3732-3741. [PMID: 38301030 DOI: 10.1021/jacs.3c10232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacob H Olshansky
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Chen GH, Chen PH, Lin CT, Jang TW, Yang P, Chen HS. Enhanced Photostability of Core/Shell Quantum Dots under Intense Blue Light Irradiation through Positive Photoaging Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927092 DOI: 10.1021/acsami.3c13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Photostability of semiconductor core/shell quantum dots (QDs) has historically been perceived as intricate and unpredictable. Notably, the long-term luminescence stability of QDs under light exposure does not seem to consistently correspond with their characteristics in the absence of light. In this study, we propose a positive photoaging mechanism of QDs, integrating both ligand/shell-induced photobrightening and surface photo-oxidation, to deal with the photostability nuances. When QDs are subjected to higher energy light, their photobrightening and photodarkening conjointly determine the photostability. Enhanced photostability may not be simply attributed to a thicker shell or the presence of ligands. When adjusted with an optimal shell thickness and supplemented with negatively charged ligands, QDs exhibit enhanced photostability in both solvents and polymers.
Collapse
Affiliation(s)
- Guan-Hong Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Hsun Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chen-Te Lin
- Ph.D. Program in Prospective Functional Materials Industry, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tyng-Woei Jang
- Ph.D. Program in Prospective Functional Materials Industry, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hsueh-Shih Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemical Engineering & Materials Science, College of Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
5
|
Babkin IA, Udepurkar AP, Van Avermaet H, de Oliveira-Silva R, Sakellariou D, Hens Z, Van den Mooter G, Kuhn S, Clasen C. Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics. SMALL METHODS 2023:e2201454. [PMID: 36995027 DOI: 10.1002/smtd.202201454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group. However, the InP-based QDs lack an overall photostability under environmental influences. One design path of achieving stability is through encapsulation in cross-linked polymer matrices with the possibility to covalently link the matrix to surface ligands of modified core-shell QDs. The work focuses on the formation of polymer microbeads suitable for InP-based QD encapsulation, allowing for an individual protection of QDs and an improved processibility via this particle-based approach. For this, a microfluidic based method in the co-flow regime is used that consists of an oil-in-water droplet system in a glass capillary environment. The generated monomer droplets are polymerized in-flow into poly(LMA-co-EGDMA) microparticles with embedded InP/ZnSe/ZnS QDs using a UV initiation. They demonstrate how a successful polymer microparticle formation via droplet microfluidics produces optimized matrix structures leading to a distinct photostability improvement of InP-based QDs compared to nonprotected QDs.
Collapse
Affiliation(s)
- Iurii Alekseevich Babkin
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Rodrigo de Oliveira-Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven, 3000, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
6
|
Zhou S, Xie B, Yang X, Zhang X, Luo X. Superior hydrophobic silica-coated quantum dot for stable optical performance in humid environments. NANOTECHNOLOGY 2022; 33:195202. [PMID: 35086083 DOI: 10.1088/1361-6528/ac4f81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Quantum dot (QD) features many exceptional optical performances but is also vulnerable to moisture which results in structural damage and luminescent decrease. This work provided and fabricated a novel superior hydrophobic methylated core/shell silica-coated QD (MSQ) for high water stability. QD was coated with a silica shell and then surface-methylated by trimethyl silane. Mercaptopropyl trimethoxy silane, tetraethyl orthosilicate, and ethoxy trimethyl silane were utilized as the ligand exchanger, the raw material of silica, and the surface modification, respectively. Characterization results illustrated the core/shell structure of MSQ. In addition, its water contact angle was up to 159.6°. QD-, silica-coated QD(SQ)-, and MSQ-silicone were made and displayed similar absorption, emission, and excitation spectra but different water stabilities. The photoluminescence intensity and photoluminescence quantum yield of MSQ-silicone hardly changed during 15 d of water immersion, in contrast to the dramatical decrease of other two kinds of composite silicone. Specifically, the photoluminescence quantum yield decreases of MSQ-, SQ-, and QD-silicone were 1%, 40%, and 43%, respectively. Therefore, MSQ had a much better water stability. The superior hydrophobic methylated silica-coated QD has a great potential to realize the long-term working stability in a humid environment and the wider application in diverse fields.
Collapse
Affiliation(s)
- Shuling Zhou
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Bin Xie
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xuan Yang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xinfeng Zhang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaobing Luo
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, People's Republic of China
| |
Collapse
|
7
|
Zhang L, Xie Y, Tian Z, Liu Y, Geng C, Xu S. Thermal Conductive Encapsulation Enables Stable High-Power Perovskite-Converted Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30076-30085. [PMID: 34151563 DOI: 10.1021/acsami.1c07194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Significant progress has been achieved on perovskite nanocrystal (PNC)-converted light-emitting diodes (PcLEDs) with the development of surface encapsulations. However, achieving bright and long-living devices remains a challenge because the thermal isolation structure of the air barriers exacerbates heat accumulation inside PcLEDs. Here, we proposed a thermal conductive encapsulation for PNCs by embedding CsPbBr3 PNCs in layer-by-layer assembled boron nitride (BN) nanoplatelets through SiO2 crosslinking. This structure effectively suppresses the heat accumulation on PNCs and provides excellent air resistance, enabling the PNC-SiO2-BN composite to withstand 1000 h of photothermal annealing (under a 405 nm laser at 0.31 W cm-2, 80 °C in air) without showing obvious degradation. Green- and white-light PcLEDs were fabricated via on-chip encapsulation of PNC-SiO2-BN. The PcLEDs achieved the milestone in long-term stability (half-life time > 1000 h) at a high power density of ∼1.7 W cm-2 and displayed extradentary stability at ∼0.15 W cm-2 with constant light intensity within 1000 h of sustained illumination. The success in making thermal conductive composites will expedite the application of PNCs in LED backlights and other optoelectronic devices.
Collapse
Affiliation(s)
- Lulu Zhang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Yangyang Xie
- School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhongzhi Tian
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Yixuan Liu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chong Geng
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Shu Xu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| |
Collapse
|
8
|
Rreza I, Yang H, Hamachi L, Campos M, Hull T, Treadway J, Kurtin J, Chan EM, Owen JS. Performance of Spherical Quantum Well Down Converters in Solid State Lighting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12191-12197. [PMID: 33682411 DOI: 10.1021/acsami.0c15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the color conversion performance of amber and red emitting quantum dots (QDs) on InGaN solid-state lighting (SSL) light emitting diode (LED) packages. Spherical quantum well (SQW) architectures (CdS/CdSe1-xSx/CdS) were prepared using a library of thio- and selenourea synthesis reagents and high throughput synthesis robotics. CdS/CdSe1-xSx QDs with narrow luminescence bands were coated with thick CdS shells (thickness = 1.6-7.5 nm) to achieve photoluminescence quantum yields (PLQY) up to 88% at amber and red emission wavelengths (λmax = 600-642 nm, FWHM < 45 nm). The photoluminescence from SQWs encapsulated in silicone and deposited on LED packages was monitored under accelerated aging conditions (oven temperature = 85 °C, relative humidity = 5-85%, blue optical power density = 3-45 W/cm2) by monitoring the red photon output over several hundred hours of continuous operation. The growth of a ZnS shell on the SQW surface increases the stability under long-term operation but also reduces the PLQY, especially of SQWs with thick CdS shells. The results illustrate that the outer ZnS shell layer is key to optimizing the PLQY and the long-term stability of QDs during operation on SSL packages.
Collapse
Affiliation(s)
- Iva Rreza
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Haoran Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leslie Hamachi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Michael Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Trevor Hull
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joseph Treadway
- Pacific Light Technologies, Portland, Oregon 97201, United States
| | - Juanita Kurtin
- Pacific Light Technologies, Portland, Oregon 97201, United States
| | - Emory M Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|