1
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
2
|
Antoniou M, Melagraki G, Lynch I, Afantitis A. In Vitro Toxicological Insights from the Biomedical Applications of Iron Carbide Nanoparticles in Tumor Theranostics: A Systematic Review and Meta-Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:734. [PMID: 38727328 PMCID: PMC11085367 DOI: 10.3390/nano14090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = -2.531; 95% CI: -2.959 to -2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs' use in bioimaging and cancer treatment.
Collapse
Affiliation(s)
- Maria Antoniou
- Department of Nanoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- Entelos Institute, Larnaca 6059, Cyprus;
- The Cyprus Institute, Nicosia 2121, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus;
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston, Birmingham B15 2TT, UK
| | - Antreas Afantitis
- Department of Nanoinformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- Entelos Institute, Larnaca 6059, Cyprus;
| |
Collapse
|
3
|
The Effect of Trehalose Coating for Magnetite Nanoparticles on Stability of Egg White Lysozyme. Int J Mol Sci 2022; 23:ijms23179657. [PMID: 36077055 PMCID: PMC9456156 DOI: 10.3390/ijms23179657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the protein stability of hen egg-white lysozymes (HEWL) by Fe3O4 and Fe3O4-coated trehalose (Fe3O4@Tre) magnetic nanoparticles (NPs) is investigated. For this purpose, the co-precipitation method was used to synthesize magnetic NPs. The synthesized NPs were characterized by XRD, FT-IR spectroscopy, FE-SEM, and VSM analysis. In addition, the stability of HEWLs exposed to different NP concentrations in the range of 0.001–0.1 mg mL−1 was investigated by circular dichroism (CD) spectroscopy, fluorescence, and UV-Vis analysis. Based on the results, in the NP concentration range of 0.001–0.04 mg mL−1 the protein structure is more stable, and this range was identified as the range of kosmotropic concentration. The helicity was measured at two concentration points of 0.02 and 0.1 mg mL−1. According to the results, the α-helix at 0.02 mg mL−1 of Fe3O4 and Fe3O4@Tre was increased from 35.5% for native protein to 37.7% and 38.7%, respectively. The helicity decreased to 36.1% and 37.4%, respectively, with increasing the concentration of Fe3O4 and Fe3O4@Tre to 0.1 mg mL−1. The formation of hydrated water shells around protein molecules occurred by using Fe3O4@Tre NPs. Hence, it can be concluded that the trehalose as a functional group along with magnetic NPs can improve the stability of proteins in biological environments.
Collapse
|
4
|
LaGrow AP, Famiani S, Sergides A, Lari L, Lloyd DC, Takahashi M, Maenosono S, Boyes ED, Gai PL, Thanh NTK. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. MATERIALS 2022; 15:ma15041557. [PMID: 35208096 PMCID: PMC8877599 DOI: 10.3390/ma15041557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
The oxidation of solution-synthesized iron (Fe) and iron carbide (Fe2C) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FexOy) shell for the Fe nanoparticles and ~2 nm for the Fe2C nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the Fe2C. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FexOy shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the Fe2C progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the Fe2C nanoparticles.
Collapse
Affiliation(s)
- Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Correspondence: (A.P.L.); (N.T.K.T.)
| | - Simone Famiani
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
| | - Leonardo Lari
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - David C. Lloyd
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Mari Takahashi
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Shinya Maenosono
- School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Kanazawa 923-1292, Japan; (M.T.); (S.M.)
| | - Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK; (L.L.); (D.C.L.); (E.D.B.); (P.L.G.)
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; (S.F.); (A.S.)
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, London W1S 4BS, UK
- Correspondence: (A.P.L.); (N.T.K.T.)
| |
Collapse
|
6
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|