1
|
Tang Z, Xie D, Li S. Synergistic enhancement of iodine capture from humid streams by microporosity and hydrophobicity of activated carbon fiber. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134369. [PMID: 38678709 DOI: 10.1016/j.jhazmat.2024.134369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Activated carbon fibers (ACF) are widely used to remove gaseous radioiodine produced during spent fuel reprocessing owing to their excellent adsorption properties. However, ACF's strong affinity for moisture tends to dominate, significantly reducing its ability to capture iodine in humid environments. The study used a one-step facile modification method of spray-deposited poly(divinylbenzene) (PDVB) nanoparticles on ACF to prepare hydrophobic activated carbon fiber (ACF-PDVB1.5). Compared to the initial ACF, the ACF-PDVB1.5 enhances the specific surface area to 1571 m2/g while maintaining abundant active sites, overcoming the disadvantage of pore reduction caused by traditional modification methods. More importantly, they also have excellent acid and alkali resistance and hydrophobicity (water contact angle 131.1°), with a preference for I2 pores (97 % microporosity). The iodine capture capacity of ACF PDVB 1.5 showed a significant increase compared to the initial ACF, as indicated by both static and dynamic adsorption tests. Notably, the dynamic iodine adsorption capacity of ACF-PDVB1.5 in a mixed iodine-water vapor stream at actual temperature (75 °C) and humid (50 % RH) conditions was 1847.69 mg/g, an increase of 55.47 % over the capacity of initial ACF (1188.71 mg/g). This work improves the overall I2 adsorption performance through hydrophobicity and pore size coordination.
Collapse
Affiliation(s)
- Zengming Tang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| | - Dong Xie
- National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China; School of Civil Engineering, University of South China, Hengyang 421001, PR China.
| | - Suzhe Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| |
Collapse
|
2
|
Song Q, Wang Q, Lu F, Dai B. Influence of Brönsted Acid Sites on Activated Carbon-Based Catalyst for Acetylene Dimerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7345-7352. [PMID: 38293864 DOI: 10.1021/acsami.3c18423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activated carbon (AC) has been widely used as a support material with both tunable acidity and abundant functional groups for solid acid catalysts in various chemical processes such as acetylene dimerization. A facile, mild acid modification method that directly activates AC to generate rich defects and oxygen functional group surface structures with Brönsted acid sites and an enhanced conductivity is presented here. Impressively, the catalyst with optimized Brönsted acid sites and an enhanced dispersion of active components exhibited a superior acetylene dimerization catalytic activity. Moreover, theoretical calculations indicated that an increase in hydrogen concentration could inhibit the formation of coke. This research offered a feasible potential way to devise and construct a carbon-based solid acid catalyst with an excellent catalytic performance.
Collapse
Affiliation(s)
- Qi Song
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory lncubation Base for Green Processing of Chemical Engineering, Shihezi 832000, China
| | - Qinqin Wang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory lncubation Base for Green Processing of Chemical Engineering, Shihezi 832000, China
| | - Fangjie Lu
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory lncubation Base for Green Processing of Chemical Engineering, Shihezi 832000, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory lncubation Base for Green Processing of Chemical Engineering, Shihezi 832000, China
| |
Collapse
|
3
|
Sun J, Sun Y, Deng G, Xia C, Liu H, Cheng S, Miao Z, Zhang C, Zhang R. Hollow carbon spheres derived from self-assembled chitosan/poly(γ-glutamic acid) nanoparticles for oil-in-water emulsion separation. Int J Biol Macromol 2024; 254:128076. [PMID: 37972828 DOI: 10.1016/j.ijbiomac.2023.128076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
With the rapid science and technology advancement, the oil-water separation in oily wastewater has become an urgent problem, especially the emulsified oil-water mixtures. Hollow carbon spheres (HCSs) have tremendous potential in separating oil-water emulsions due to their rich porous channels and high surface-to-volume ratio. In this work, as-prepared chitosan/poly(γ-glutamic acid) nanoparticles crosslinked by Ni2+ (Ni2+/CS/γ-PGA NPs) were used as carbon precursor to fabricate HCSs. This strategy separated the formation process of the biomolecular microspheres and the carbonization process. Especially, the Ni2+/CS/γ-PGA NPs were fabricated from the self-assembly of chitosan and γ-PGA in aqueous solution and the crosslinking of Ni2+ via the electrostatic interactions, facilitating the formation of biomolecular microspheres and making the usable of biomolecule-based carbon precursors diversity. After lyophilization, Ni2+/CS/γ-PGA NPs powder was obtained, which was then carbonized in a tube furnace under N2 atmosphere. During the carbonization process, the nickel species aggregated together to form the core of nickel@carbon nanoparticles, and carbon formed the shell. At last, nickel nanoparticles were removed from the carbon framework by hydrochloric acid, obtaining HCSs with super-hydrophobicity and lipophilicity. The as-prepared HCSs exhibited excellent separation performance in oil-in-water emulsions.
Collapse
Affiliation(s)
- Jingru Sun
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yang Sun
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Guangyu Deng
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Huan Liu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Siying Cheng
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zongcheng Miao
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
4
|
Ji Y, Zhuang Y, Jiao X, Cheng Z, Liu C, Yu X, Zhang Y. 3D Monolayer Silanation of Porous Structure Facilitating Multi-Phase Pollutants Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303658. [PMID: 37449342 DOI: 10.1002/smll.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Activated carbon (AC) is widely used to removing hazardous pollutants from air and water, owing to its exceptional adsorption properties. However, the high affinity of water molecules with the surface oxygen-containing functional groups can adversely affect the adsorption performance of AC. In this study, a facile and efficient method is presented for fabrication of hydrophobic AC through surface monolayer silanation. Compared to initial AC, the hydrophobic AC improves the water contact angle from 29.7° to 123.5° while maintaining high specific surface area and enhances the removal capacity of multi-phase pollutants (emulsified oil and toluene). Additionally, the hydrophobic AC exhibits excellent adsorption capability to harmful algal bloom species (Chlorella) (97.56%) and algal organic matter (AOM) (96.23%) owing to electrostatic interactions and surface hydrophobicity. The study demonstrates that this method of surface monolayer silanation can effectively weaken the effect of water molecules on AC adsorption capacity, which has significant potential for practical use in air and water purification, as well as in the control of harmful algal blooms.
Collapse
Affiliation(s)
- Yanzheng Ji
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Yifan Zhuang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xuan Jiao
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Zhikang Cheng
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Chunhui Liu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| | - Youfa Zhang
- School of Materials Science and Engineering, Southeast University, Southeast Road 2nd, Nanjing, 211189, P. R. China
| |
Collapse
|
5
|
Prabha Padinhattath S, Gardas RL. Extraction of Diclofenac Sodium from Water using N-Benzylethanolamine Based Ionic Liquids: Computational and Experimental Approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Chen W, Huang X, Zhou M, Liu H, Xu M, Zhu J. Rose-petal-inspired fabrication of conductive superhydrophobic/superoleophilic carbon with high adhesion to water from orange peels for efficient oil adsorption from oil-water emulsion. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Sun J, Liu H, Xu S, Zhu Y, Xia C, Gan L, Zhang R, Zhang C, Miao Z. A fabrication strategy for porous carbon spheres based on cross‐linked chitosan/poly(γ‐glutamic acid) colloidal particles. J Appl Polym Sci 2022. [DOI: 10.1002/app.53513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingru Sun
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Huan Liu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | | | - Ying Zhu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Lei Gan
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| | - Zongcheng Miao
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu China
| |
Collapse
|
8
|
Xu L, Wang W, Zhang L, Wang D, Zhang A. Ultrasensitive and Recyclable Multifunctional Superhydrophobic Sensor Membrane for Underwater Applications, Weather Monitoring, and Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21623-21635. [PMID: 35471018 DOI: 10.1021/acsami.2c01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although flexible sensors have attracted considerable attention in emerging fields, including wearable electronics and soft robotics, their stability must be considered in practical applications, especially the effects of external factors on the sensing performance. Herein, a recyclable flexible sensor with superhydrophobicity and a highly sensitive strain response was developed by combining electrospinning and ultrasonication anchoring techniques. The constructed hierarchical network structure is composed of the fluorine-free superhydrophobic multiwalled carbon nanotubes and a porous elastomer membrane substrate reinforced by nanoparticles. The obtained sensor exhibited exceptional strain-sensing performance in terms of ultrahigh sensitivity (maximum gauge factor of 12 172.46), a fast response time of 80 ms, and excellent durability (10 000 cycles). Based on these outstanding merits, the strain sensor can detect various human motions without being interfered with by harsh environments. Moreover, superhydrophobic membranes can be combined with electronic devices for weather monitoring and underwater sensing. Noteworthily, damaged sensors can be quickly dissolved by a small amount of cyclohexane, enabling material recovery. The recyclable multifunctional membranes could reduce the potential pollution to the environment and show highly promising applications in complex environments.
Collapse
Affiliation(s)
- Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Weiwen Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
9
|
Lu J, Li F, Miao G, Miao X, Ren G, Wang B, Song Y, Li X, Zhu X. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119624] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Rahali S, Ben Aissa MA, Khezami L, Elamin N, Seydou M, Modwi A. Adsorption Behavior of Congo Red onto Barium-Doped ZnO Nanoparticles: Correlation between Experimental Results and DFT Calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7285-7294. [PMID: 34102848 DOI: 10.1021/acs.langmuir.1c00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ba-loaded ZnO nanoparticles (Ba/ZnO) were obtained by the co-precipitation process and employed as a sorbent for Congo Red (C32H22N6Na2O6S2) dye (CR). Physicochemical parameters such as particle size, pH, and contact time were checked to characterize the adsorption process. The maximum adsorption capacity of Ba/ZnO NPs for CR (1614.26 mg/g) proves its potential utility in the elimination of CR dye from wastewater. The adsorption mechanism was studied via infrared spectroscopy and density functional theory calculations. The geometrical parameters and electronic properties of the CR-Ba/ZnO complex, particularly the interaction energy, the density of states, and the charge transfer, highlighted the Ba-ion mediation in the chemical bond formation between CR and the surface. The interaction between CR and Ba-doped ZnO has found to show strong chemisorption with charge transfer between the SO3- group and adsorbed Ba2+ ion on the surface.
Collapse
Affiliation(s)
- Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| | - Lotfi Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- LaNSER, Research and Technology Centre of Energy (CRTEn), Borj Cedria Technopark, BP.95, Hammam-Lif 2050, Tunisia
| | - Nuha Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- Chemistry Department, Sudan University of Science and Technology College of Science, Khartoum 13311, Sudan
| | | | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| |
Collapse
|