1
|
Chen C, Wu M, Xu Y, Ma C, Song M, Jiang G. Efficient Photoreduction of CO 2 to CO with 100% Selectivity by Slowing Down Electron Transport. J Am Chem Soc 2024; 146:9163-9171. [PMID: 38515295 DOI: 10.1021/jacs.3c14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
It remains challenging to obtain a single product in the gas-solid photocatalytic reduction of CO2 because CO and CH4 are usually produced simultaneously. This study presents the design of the I-type nested heterojunction TiO2/BiVO4 with controllable electron transport by modulating the TiO2 component. This study demonstrates that slowing electron transport could enable TiO2/BiVO4-4 to generate CO with 100% selectivity. In addition, modifying TiO2/BiVO4-4 by loading a Cu single atom further increased the CO product yield by 3.83 times (17.33 μmol·gcat-1·h-1), while maintaining 100% selectivity for CO. Characterization and density functional theory (DFT) calculations revealed that the selectivity was mainly determined by the electron transport of the support, whereas CO2 was efficiently adsorbed and activated by the Cu single atom. Such a two-step regulation strategy of combining heterojunction with single atom enhances the possibility of simultaneously obtaining high selectivity and high yield in the photocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
3
|
Dwivedi I, Sarkar A, Rajaraman G, Subramaniam C. Electric-Field-Induced Solid-Gas Interfacial Chemical Reaction in Carbon Nanotube Ensembles: Route toward Ultra-sensitive Gas Detectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13271-13279. [PMID: 35266685 DOI: 10.1021/acsami.1c23670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electric field at the sharp pointed tips of single wall carbon nanotube ensembles has been utilized to kinetically accelerate hitherto unobserved chemical reactions at the heterogeneous solid-gas interfaces. The principle of ″action-of-points″ drives specific chemical reactions between the defect sites of single wall carbon nanotubes (CNTs) and ppb levels of gaseous hydrogen sulfide. This is manifested as changes in the electrical conductivity of the conductive CNT-ensemble (cCNT) and visually tracked as enthalpic modulations at the site of the reaction through infrared thermometry. Importantly, the principle has been observed for a variety of analytes such as NH3, H2O, and H2S, leading to distinctly correlatable changes in reactivity and conductivity changes. Theoretical calculations based on the density functional theory in the presence and absence of applied electric field reveal that the applied electric field activates the H2S gas molecules by charge polarization, yielding favorable energetics. These results imply the possibility of carrying out site-specific chemical modifications for nanomaterials and also provide transformative opportunities for the development of miniaturized e-nose-based gas analyzers.
Collapse
Affiliation(s)
- Itisha Dwivedi
- Department of Chemistry, Indian Institution of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Arup Sarkar
- Department of Chemistry, Indian Institution of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institution of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Chandramouli Subramaniam
- Department of Chemistry, Indian Institution of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
4
|
Wang H, Zhang G, Fan G, Yang L, Li F. Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO 2 Hydrogenation to Produce Methanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangcheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Salvatore KL, Wong SS. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires. Acc Chem Res 2021; 54:2565-2578. [PMID: 33989501 DOI: 10.1021/acs.accounts.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAchieving precision and reproducibility in terms of physical structure and chemical composition within arbitrary nanoscale systems remains a "holy grail" challenge for nanochemistry. Because nanomaterials possess fundamentally distinctive size-dependent electronic, optical, and magnetic properties with wide-ranging applicability, the ability to produce homogeneous and monodisperse nanostructures with precise size and shape control, while maintaining a high degree of sample quality, purity, and crystallinity, remains a key synthetic objective. Moreover, it is anticipated that the methodologies developed to address this challenge ought to be reasonably simple, scalable, mild, nontoxic, high-yield, and cost-effective, while minimizing reagent use, reaction steps, byproduct generation, and energy consumption.The focus of this Account revolves around the study of various types of nanoscale one-dimensional core-shell motifs, prepared by our group. These offer a compact structural design, characterized by atom economy, to bring together two chemically distinctive (and potentially sharply contrasting) material systems into contact within the structural context of an extended, anisotropic configuration. Herein, we describe complementary strategies aimed at resolving the aforementioned concerns about precise structure and compositional control through the infusion of careful "quantification" and systematicity into customized, reasonably sustainable nanoscale synthetic protocols, developed by our group. Our multipronged approach involved the application of (a) electrodeposition, (b) electrospinning, (c) a combination of underpotential deposition and galvanic displacement reactions, and (d) microwave-assisted chemistry to diverse core-shell model systems, such as (i) carbon nanotube-SiO2 composites, (ii) SnO2/TiO2 motifs, (iii) ultrathin Pt-monolayer shell-coated alloyed metal core nanowires, and (iv) Cu@TiO2 nanowires, for applications spanning optoelectronics, photocatalysis, electrocatalysis, and thermal CO2 hydrogenation, respectively.In so doing, over the years, we have reported on a number of different characterization tools involving spectroscopy (e.g., extended X-ray absorption fine structure (EXAFS) spectroscopy) and microscopy (e.g., high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM)) for gaining valuable insights into the qualitative and quantitative nature of not only the inner core and outer shell themselves but also their intervening interface. While probing the functional catalytic behavior of a few of these core-shell structures under realistic operando conditions, using dynamic, in situ characterization techniques, we found that local and subtle changes in chemical composition and physical structure often occur during the reaction process itself. As such, nuanced differences in atomic packing, facet exposure, degree of derivatization, defect content, and/or extent of crystallinity can impact upon observed properties with tangible consequences for performance, mechanism, and durability.
Collapse
Affiliation(s)
- Kenna L. Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Stanislaus S. Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Miao D, Pan X, Jiao F, Ji Y, Hou G, Xu L, Bao X. Selective synthesis of para-xylene and light olefins from CO 2/H 2 in the presence of toluene. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00602a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
para-xylene and light olefins are co-produced in CO2 hydrogenation in the presence of toluene over OXZEO composite catalyst.
Collapse
Affiliation(s)
- Dengyun Miao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiulian Pan
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Feng Jiao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yi Ji
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guangjin Hou
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Lei Xu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xinhe Bao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
7
|
Sun X, Han J, Guo R. A Mini Review on Yolk-Shell Structured Nanocatalysts. Front Chem 2020; 8:606044. [PMID: 33330401 PMCID: PMC7734176 DOI: 10.3389/fchem.2020.606044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Yolk-shell structured nanomaterials, possessing a hollow shell and interior core, are emerging as unique nanomaterials with applications ranging from material science, biology, and chemistry. In particular, the scaffold yolk-shell structure shows great promise as a nanocatalyst. Specifically, the hollow shell offers a confined space, which keeps the active yolk from aggregation and deactivation. The inner void ensures the pathway for mass transfer. Over the last few decades, many strategies have been developed to endow yolk-shell based nanomaterials with superior catalytic performance. This minireview describes synthetic methods for the preparation of various yolk-shell nanomaterials. It discusses strategies to improve the performance of yolk-shell catalysts with examples for engineering the shell, yolk, void, and related synergistic effects. Finally, it considers the challenges and prospects for yolk-shell nanocatalysts.
Collapse
Affiliation(s)
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | | |
Collapse
|
8
|
Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B 2020; 8:10837-10844. [DOI: 10.1039/d0tb02078h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The UA@Ti3C2 QDs with blue light emission were synthesized by a simple and green microwave-assisted method, and used as a sensitive and selective probe for the detection of TNP both on surfaces and in solution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haiyan Cao
- Key Laboratory of Chongqing Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|