1
|
Xu C, Jiang L, Zhang Y, Zhu G, Zhu X, Zhao Y, Li XP, Zhang S, Li H, Xu L, Li C, He X, Gao J, Xu H. Lotus leaf-inspired poly(lactic acid) nanofibrous membranes with enhanced humidity resistance for superefficient PM filtration and high-sensitivity passive monitoring. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137516. [PMID: 39923376 DOI: 10.1016/j.jhazmat.2025.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The biomimetic design principles offer promising solutions to fabrication of multifunctional nanofibrous membranes (NFMs) with on-demand hierarchies and properties. Herein, a combined electrospinningelectrospray approach was employed to firmly anchor MOF nanocrystals onto poly(lactic acid) (PLA) nanofibers, resembling the naturally occurring dense protrusions at the lotus leaf. The formation of unique MOF-protruding superstructures gave rise to an exceptional combination of increased electroactivity, in-situ electret properties and charge regeneration mechanisms, as well as remarkable humidity resistance. With 8 wt% bioinspired MOF-protrusions for the electrospunelectrosprayed PLA NFMs (BM-PLA8), the initial surface potential was elevated to 3.0 kV and slightly decreased to 2.6 kV after 7-day ageing, in clear contrast to only 1.1 and 0.6 kV for the normal PLA, respectively. Moreover, the tribo-output voltage and current were significantly promoted for BM-PLA8 (64.5 V and 151.6 nA), demonstrating high humidity resistance and long-term robustness even at 90 % RH. It conferred distinct improvements in air filtration performance for BM-PLA8 even at the highest airflow velocity of 85 L/min (below 250 Pa, 99.9 % and 95.0 % removal of PM2.5 and PM0.3, respectively), far surpassing the normal PLA counterpart (nearly 350 Pa, 89.5 % and 75.8 %). Arising from the respiration-driven charge regeneration mechanisms, passive respiratory monitoring of high sensitivity was demonstrated for BM-PLA8, showing great promise for efficient healthcare under the challenging circumstances.
Collapse
Affiliation(s)
- Chao Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liang Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Lei Xu
- Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang 834000, China
| | - Changyun Li
- Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang 834000, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| |
Collapse
|
2
|
Xia L, Cheng X, Jiang L, Min Y, Yao W, Wu Q, Xu Q. High-performance bismuth vanadate photoanodes cocatalyzed with nitrogen, sulphur co-doped ferrocobalt-metal organic frameworks thin layer for photoelectrochemical water splitting. J Colloid Interface Sci 2024; 659:676-686. [PMID: 38211485 DOI: 10.1016/j.jcis.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
In this study, we prepare a highly efficient BiVO4 photoanode co-catalyzed with an ultrathin layer of N, S co-doped FeCo-Metal Organic Frameworks (MOFs) for photoelectrochemical water splitting. The introduction of N and S into FeCo-MOFs enhances electron and mass transfer, exposing more catalytic active sites and significantly improving the catalytic performance of N, S co-doped FeCo-based MOFs in water oxidation. The optimized BiVO4/NS-FeCo-MOFs photoanode exhibits impressive results, with a photocurrent density of 5.23 mA cm-2 at 1.23 V vs. Reversible Hydrogen Electrode (RHE) and an incident photon-to-charge conversion efficiency (IPCE) of 74.4 % at 450 nm in a 0.1 M phosphate buffered solution (pH = 7). These values are 4.84 times and 6.2 times higher than those of the original BiVO4 photoanode, respectively. Furthermore, the optimized BiVO4/NS-FeCo-MOFs photoanode demonstrates exceptional long-term stability, maintaining 96 % of the initial current after five hours.
Collapse
Affiliation(s)
- Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Xinsheng Cheng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Liwen Jiang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
3
|
Chai H, Gao L, Jin J. Revealing the Essential Role of Iron Phosphide and its Surface-Evolved Species in the Photoelectrochemical Water Oxidation by Gd-Doped Hematite Photoanode. CHEMSUSCHEM 2022; 15:e202201030. [PMID: 35761757 DOI: 10.1002/cssc.202201030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphates are easily derived from transition metal phosphides under natural conditions, and the real roles of these two in catalytic reactions are not yet clear. Here, a multiphase FeP/Gd-Fe2 O3 shell-core structure photoanode was constructed and explored regarding the real role of FeP and its surface-reconstructed iron phosphate (Fe-Pi) in photoelectrochemical water oxidation. The FeP/Gd-Fe2 O3 photoanode exhibited an excellent photocurrent density of 2.56 mA cm-2 at 1.23 V versus the reversible hydrogen electrode, up to 4 times greater than those of the pristine α-Fe2 O3 (0.64 mA cm-2 ). Detailed studies showed that FeP could act as a photosensitizer to enhance light absorption and as a conductive layer to accelerate charge transfer. The FeP significantly enhanced the incident photon-to-current conversion efficiency of the photoanode and improved the electron transition within the photoanode. Naturally evolved Fe-Pi on the surface provided more active sites for water oxidation. They effectively passivated the surface capture state and synergistically inhibited the electron-hole recombination. Moreover, the in-situ constructed multiphase catalyst had a smaller interfacial contact resistance than the intentionally decorative cocatalyst. This work provides new insight into the understanding of the essential role of transition metal phosphides and their surface-reconstructed species in catalytic reactions.
Collapse
Affiliation(s)
- Huan Chai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lili Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Bu Q, Zhao Q, Lu G, Zhu X, Zhang Y, Xie T, Liu Q, Jiang J. An efficient strategy to boost the directed migration of photogenerated holes by introducing phthalocyanine as a hole extraction layer. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00701k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phthalocyanine with adjustable band energy and a binding group acts as a hole extraction layer to accelerate hole transfer from Ti-Fe2O3 to CoPi, and thus improves the PEC water oxidation performance of Ti-Fe2O3.
Collapse
Affiliation(s)
- Qijing Bu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Qifeng Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Guang Lu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Jianzhuang Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
5
|
Wang XT, Jiang YR, Huang LY, Gu YX, Huang XQ, Wang AJ, Yuan PX, Feng JJ. The electrochemiluminescence coreactant accelerator of metal-organic frameworks grafted with N-(aminobutyl)- N-(ethylisoluminol) for the ultrasensitive detection of chloramphenicol. Analyst 2021; 146:5995-6004. [PMID: 34505605 DOI: 10.1039/d1an01077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, metal-organic frameworks (MOFs) are utilized as effective ECL coreactant accelerator to enhance the ECL responses of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Zn-based MOFs (MOF-Zn-1) were prepared by chelating Zn ions with melamine and thiophenedicarboxylic acid (TPDA), which observably accelerated the electrocatalytic oxidation of tripropylamine (TPA). Then, ABEI-MOF-Zn-1 as a high-performance ECL emitter was synthesized via an amide reaction between ABEI and mercaptopropionic acid (MPA) modified MOF-Zn-1. Strikingly, the ABEI-MOF-Zn-1 showed the 18-fold increase in the ECL signals relative to pure ABEI by using TPA as a coreactant. Moreover, ferrocene (Fc) as a quencher was first linked with capture DNA (cDNA), and then used to modify the ABEI-MOF-Zn-1, thereby constructing a label-free ECL biosensor. After the linkage between chloramphenicol (CAP) and aptamer DNA (aptDNA), the ECL response was definitely recovered by releasing L-DNA from double-stranded DNA (dsDNA, hybridization of aptDNA and L-DNA). The resultant sensor showed a wide linear range of 1.00 nM-0.10 mM (R2 = 0.99) and a low limit of detection (LOD) down to 0.11 nM for detecting CAP. This work developed a novel pattern to design an efficient ECL enhanced emitter, coupled by expanding its potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Xin-Tao Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Rong Jiang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Li-Yan Huang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Xin Gu
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Qin Huang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Pei-Xin Yuan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|