1
|
Farokhi A, Lipinski S, Cavinato LM, Shahroosvand H, Pashaei B, Karimi S, Bellani S, Bonaccorso F, Costa RD. Metal complex-based TADF: design, characterization, and lighting devices. Chem Soc Rev 2025; 54:266-340. [PMID: 39565044 DOI: 10.1039/d3cs01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be ad hoc engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs). By presenting an overview of the state of the art of all metal complex-based TADF compounds, this review aims to provide a comprehensive, authoritative and critical reference for their design, characterization and device application, highlighting the advantages and drawbacks for the chemical, photonic and optoelectronic communities involved in this interdisciplinary research field.
Collapse
Affiliation(s)
- Afsaneh Farokhi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sophia Lipinski
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Luca M Cavinato
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Babak Pashaei
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Soheila Karimi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| |
Collapse
|
2
|
Izquierdo-García P, Fernández-García JM, Perles J, Martín N. Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach. J Am Chem Soc 2024; 146:34943-34949. [PMID: 39642941 DOI: 10.1021/jacs.4c14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The semiconductor properties of nanosized graphene fragments, known as molecular nanographenes, position them as exceptional candidates for next-generation optoelectronics. In addition to their remarkable optical and electronic features, chiral nanographenes exhibit high dissymmetry factors in circular dichroism and circularly polarized luminescence measurements. However, the synthesis of enantiomerically pure nanographenes remains a significant challenge. Typically, these materials are synthesized in their racemic form, followed by separation of the enantiomers using high-performance liquid chromatography (HPLC). While effective, this method often requires expensive instrumentation, extensive optimization of separation conditions, and typically yields analytical quantities of the desired samples. An alternative approach is the enantioselective synthesis of chiral molecular nanographenes; however, to date, only two examples have been documented in the literature. In this work, we present a straightforward chemical method for the chiral resolution of helical bilayer nanographenes. This approach enables the effective and scalable preparation of enantiomerically pure nanographenes while avoiding the need for HPLC. The incorporation of a BINOL core into the polyarene precursor facilitates the separation of diastereomers through esterification with enantiomerically pure camphorsulfonyl chloride. Following the separation of the diastereomers by standard chromatographic column, the hydrolysis of the camphorsulfonyl group yields enantiomerically pure nanographene precursors. The subsequent graphitization, achieved through the Scholl reaction, occurs in an enantiospecific manner and with the concomitant formation of a furan ring and a heterohelicene moiety. The absolute configurations of the final enantiomers, P-oxa[9]HBNG and M-oxa[9]HBNG, have been determined using X-ray diffraction. Additionally, electrochemical, photophysical, and chiroptical properties have been thoroughly evaluated.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Zhang X, Ràfols-Ribé J, Mindemark J, Tang S, Lindh M, Gracia-Espino E, Larsen C, Edman L. Efficiency Roll-Off in Light-Emitting Electrochemical Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310156. [PMID: 38211953 DOI: 10.1002/adma.202310156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Understanding "efficiency roll-off" (i.e., the drop in emission efficiency with increasing current) is critical if efficient and bright emissive technologies are to be rationally designed. Emerging light-emitting electrochemical cells (LECs) can be cost- and energy-efficiently fabricated by ambient-air printing by virtue of the in situ formation of a p-n junction doping structure. However, this in situ doping transformation renders a meaningful efficiency analysis challenging. Herein, a method for separation and quantification of major LEC loss factors, notably the outcoupling efficiency and exciton quenching, is presented. Specifically, the position of the emissive p-n junction in common singlet-exciton emitting LECs is measured to shift markedly with increasing current, and the influence of this shift on the outcoupling efficiency is quantified. It is further verified that the LEC-characteristic high electrochemical-doping concentration renders singlet-polaron quenching (SPQ) significant already at low drive current density, but also that SPQ increases super-linearly with increasing current, because of increasing polaron density in the p-n junction region. This results in that SPQ dominates singlet-singlet quenching for relevant current densities, and significantly contributes to the efficiency roll-off. This method for deciphering the LEC efficiency roll-off can contribute to a rational realization of all-printed LEC devices that are efficient at highluminance.
Collapse
Affiliation(s)
- Xiaoying Zhang
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
| | - Joan Ràfols-Ribé
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
- LunaLEC AB, Umeå University, Umeå, SE-90187, Sweden
| | - Jonas Mindemark
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
- LunaLEC AB, Umeå University, Umeå, SE-90187, Sweden
| | - Mattias Lindh
- Sustainable Resource Conversion unit, Biorefinery and Energy department, RISE Research Institutes of Sweden AB, Storgatan 65, Umeå, SE-90330, Sweden
| | - Eduardo Gracia-Espino
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
| | - Christian Larsen
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
- LunaLEC AB, Umeå University, Umeå, SE-90187, Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
- LunaLEC AB, Umeå University, Umeå, SE-90187, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Umeå University, Umeå, SE-90187, Sweden
| |
Collapse
|
4
|
Sanz-Velasco A, Amargós-Reyes O, Kähäri A, Lipinski S, Cavinato LM, Costa RD, Kostiainen MA, Anaya-Plaza E. Controlling aggregation-induced emission by supramolecular interactions and colloidal stability in ionic emitters for light-emitting electrochemical cells. Chem Sci 2024; 15:2755-2762. [PMID: 38404386 PMCID: PMC10882460 DOI: 10.1039/d3sc05941c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Chromophores face applicability limitations due to their natural tendency to aggregate, with a subsequent deactivation of their emission features. Hence, there has been a fast development of aggregation induced emission (AIE) emitters, in which non-radiative motional deactivation is inhibited. However, a fine control of their colloidal properties governing the emitting performance is fundamental for their application in thin film optoelectronics. In addition, ion-based lighting devices, such as light emitting electrochemical cells (LECs), requires the design of ionic AIE emitters, whose structure allows (i) an easy ion polarizability to assist charge injection and (ii) a reversible electrochemical behavior. To date, these fundamental questions have not been addressed. Herein, the hydrophilic/hydrophobic balance of a family of cationic tetraphenyl ethene (TPE) derivatives is finely tuned by chemical design. The hydrophilic yet repulsive effect of pyridinium-based cationic moieties is balanced with hydrophobic variables (long alkyl chains or counterion chemistry), leading to (i) a control between monomeric/aggregate state ruling photoluminescence, (ii) redox behavior, and (iii) enhanced ion conductivity in thin films. This resulted in a LEC enhancement with the first ionic AIE emitters, reaching values of 0.19 lm W-1 at ca. 50 cd m-2. Overall, this design rule will be key to advance ionic active species for optoelectronics.
Collapse
Affiliation(s)
- Alba Sanz-Velasco
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Olivia Amargós-Reyes
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Aya Kähäri
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Sophia Lipinski
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Luca M Cavinato
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Schulgasse 22 94315 Straubing Germany
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| | - Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University Kemistintie 1 02150 Espoo Finland
| |
Collapse
|
5
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
6
|
Huseynova G, Ràfols-Ribé J, Auroux E, Huang P, Tang S, Larsen C, Edman L. Chemical doping to control the in-situ formed doping structure in light-emitting electrochemical cells. Sci Rep 2023; 13:11457. [PMID: 37454107 DOI: 10.1038/s41598-023-38006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
The initial operation of a light-emitting electrochemical cell (LEC) constitutes the in-situ formation of a p-n junction doping structure in the active material by electrochemical doping. It has been firmly established that the spatial position of the emissive p-n junction in the interelectrode gap has a profound influence on the LEC performance because of exciton quenching and microcavity effects. Hence, practical strategies for a control of the position of the p-n junction in LEC devices are highly desired. Here, we introduce a "chemical pre-doping" approach for the rational shifting of the p-n junction for improved performance. Specifically, we demonstrate, by combined experiments and simulations, that the addition of a strong chemical reductant termed "reduced benzyl viologen" to a common active-material ink during LEC fabrication results in a filling of deep electron traps and an associated shifting of the emissive p-n junction from the center of the active material towards the positive anode. We finally demonstrate that this chemical pre-doping approach can improve the emission efficiency and stability of a common LEC device.
Collapse
Affiliation(s)
- Gunel Huseynova
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Joan Ràfols-Ribé
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Etienne Auroux
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Christian Larsen
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
7
|
Matuszewska O, Battisti T, Ferreira RR, Biot N, Demitri N, Mézière C, Allain M, Sallé M, Mañas-Valero S, Coronado E, Fresta E, Costa RD, Bonifazi D. Tweaking the Optoelectronic Properties of S-Doped Polycyclic Aromatic Hydrocarbons by Chemical Oxidation. Chemistry 2023; 29:e202203115. [PMID: 36333273 DOI: 10.1002/chem.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2 S cm-1 and 10-2 -10-3 S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.
Collapse
Affiliation(s)
- Oliwia Matuszewska
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Ruben R Ferreira
- Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Nicolas Biot
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Cécile Mézière
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
8
|
Cavinato LM, Wölfl S, Pöthig A, Fresta E, Garino C, Fernandez-Cestau J, Barolo C, Costa RD. Multivariate Analysis Identifying [Cu(N^N)(P^P)] + Design and Device Architecture Enables First-Class Blue and White Light-Emitting Electrochemical Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109228. [PMID: 35034407 DOI: 10.1002/adma.202109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
White light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)]+ have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)]+ -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)]+ design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A-1 @170 cd m-2 . Validation comes from synthesis, X-ray structure, thin-film spectroscopic/microscopy/electrochemical characterization, and device optimization, realizing the first [Cu(N^N)(P^P)]+ -based blue-LEC with 3.6 cd A-1 @180 cd m-2 . This represents a record performance compared to the state-of-the-art tricoordinate Cu(I)-complexes blue-LECs (0.17 cd A-1 @20 cd m-2 ). Versatility is confirmed with the synthesis of the analogous complex with 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrazine (N^N), showing a close prediction/experiment match: λ = 590/580 nm; efficiency = 0.55/0.60 cd A-1 @30 cd m-2 . Finally, experimental design is applied to fabricate the best white multicomponent host:guest LEC, reducing the number of trial-error attempts toward the first white all-[Cu(N^N)(P^P)]+ -LECs with 0.6 cd A-1 @30 cd m-2 . This corresponds to approximately ten-fold enhancement compared to previous LECs (<0.05 cd A-1 @<12 cd m-2 ). Hence, this work sets in the first multivariate approach to design emitters/active layers, accomplishing first-class [Cu(N^N)(P^P)]+ -based blue/white LECs that were previously elusive.
Collapse
Affiliation(s)
- Luca M Cavinato
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Sarah Wölfl
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
| | - Julio Fernandez-Cestau
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudia Barolo
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
- ICxT Interdepartmental Centre, University of Turin, Lungo Dora Siena 100, Turin, 10153, Italy
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| |
Collapse
|
9
|
Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last few years, imidazo[1,5-a]pyridine scaffolds and derivatives have attracted growing attention due to their unique chemical structure and optical behaviors. In this work, a series of pyridylimidazo[1,5-a]pyridine derivatives and their corresponding pyridinium salts were synthesized and their optical properties investigated to evaluate the effect of the quaternization on the optical features both in solution and polymeric matrix. A critical analysis based on the spectroscopic data, chemical structures along with density functional theory calculation is reported to address the best strategies to prevent aggregation and optimize the photophysical properties. The obtained results describe the relationship between chemical structure and optical behaviors, highlighting the role of pendant pyridine. Finally, the presence of a positive charge is fundamental to avoid any possible aggregation process in polymeric films.
Collapse
|
10
|
John JC, Shanmugasundaram K, Brahmmananda Rao CVS, Gopakumar G, Choe Y. Furil-based ionic small molecules for green-emitting non-doped LECs with improved color purity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel furil-based small molecules FlBzPy and FlThPy were designed and synthesized with simple synthetic procedures for the first time for the LEC application.
Collapse
Affiliation(s)
- Jino C. John
- School of Chemical and Biomolecular Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| | | | - C. V. S. Brahmmananda Rao
- Solution Chemistry & Mass Spectrometry Section
- Fuel Chemistry Division
- Indira Gandhi Centre for Atomic Research
- Kalpakkam 603102
- India
| | - Gopinadhanpillai Gopakumar
- Solution Chemistry & Mass Spectrometry Section
- Fuel Chemistry Division
- Indira Gandhi Centre for Atomic Research
- Kalpakkam 603102
- India
| | - Youngson Choe
- School of Chemical and Biomolecular Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| |
Collapse
|