1
|
Mao M, Li D, Wu Y, Li B, Han X, Yan J, Shang L, Zhang H, Li X. Construction of Antibacterial MoS 2-ACF Phenotype Switcher for Bidirectionally Regulating Inflammation-Proliferation Transition in Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:963. [PMID: 40077188 PMCID: PMC11901119 DOI: 10.3390/ma18050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily switch from pro-inflammatory M1 phenotypes to anti-inflammatory M2 phenotypes in response to different microenvironment stimuli. Herein, taking advantage of enhanced electron transfer by coupling MoS2 with a highly conductive activated carbon fiber (ACF) network, a MoS2-ACF heterojunction structure was constructed as a macrophage M1-M2 phenotype switcher (MAPS) for regulating inflammation-proliferation transition to accelerate wound healing. In the early stages of wound repair, MAPS-mediated photothermal effects with near-infrared laser irradiation could promote macrophage reprogramming to the M1 phenotype, which can expedite inflammation. NIR photo-induced hyperthermia, together with M1 macrophages, directly and indirectly kills bacteria. Later, during the healing process, the MAPS could further reprogram macrophages towards the M2 phenotype via its inherent reactive oxygen species (ROS) scavenging ability to resolve inflammation, promoting cell proliferation. Therefore, MoS2-ACF heterojunction structures provide a new strategy to modulate inflammation-proliferation transition by rebalancing the immuno-environmental equilibrium of macrophage M1/M2 phenotypes.
Collapse
Affiliation(s)
- Mengxin Mao
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Diyi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bing Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lei Shang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China (Y.W.)
| |
Collapse
|
2
|
Yuan S, Zhu L, Luo Y, Chen X, Jing H, Wang J, Su X, Liang M, Zhuang Z. Igniting tumour microenvironment in triple-negative breast cancer using a mannose/hyaluronic acid dual-coated Ganoderma polysaccharide-superparamagnetic iron oxide nanocomplex for combinational therapies. J Drug Target 2025; 33:111-126. [PMID: 39470031 DOI: 10.1080/1061186x.2024.2408721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Eliciting tumour microenvironment (TME) activation in triple-negative breast cancer (TNBC) is crucial for effective anti-tumour therapies. The aim of this study is to employ pharmaceutical approaches to precisely deliver Ganoderma polysaccharide (GPS) to tumour sites, thereby enhancing TME activation. We first established a direct link between the accumulation of GPS within tumours and its efficacy in the TME activation. Building upon this insight, we then engineered a mannose/hyaluronic acid dual-coated GPS-loaded superparamagnetic iron oxide nanocomplex (Man/HA/GPS-SPIONs) with a particle size of 33.8 ± 1.6 nm and a zeta potential of -22.4 ± 3.5 mV, capable of precise tumour accumulation through magnet-assisted targeting and internalisation by tumour-associated macrophages (TAMs) and tumour cells, facilitated by dual ligand modification. In vitro, Man/HA/GPS-SPIONs effectively induced M1 polarisation of macrophages (CD86+ cells: 38.6 ± 2.8%), curbed 4T1 cell proliferation (viability: 47.3 ± 2.9%) and heightened Th1 cytokine release. Significantly, in vivo, Man/HA/GPS-SPIONs notably suppressed tumour growth (tumour index: 0.048 ± 0.005), fostered M1 polarisation of TAMs (CD45+F4/80+CD86+ cells: 26.1 ± 7.2%), consequently bolstering intratumoural T cytotoxic cells. This enhancement was intricately tied to the efficient co-delivery of GPS and iron ions to the tumours, made possible by the Man/HA/GPS-SPIONs delivery system. The synergistic effects with paclitaxel (PTX, inhibition rate: 61.2 ± 4.3%) and PD-1 inhibitors (inhibition rate: 69.8 ± 7.6%) underscored the translational potential of this approach. By harnessing a well-conceived iron-based drug delivery strategy, this study amplifies the tumour immune modulatory potential of natural polysaccharides, offering insightful guidance for interventions in the TME and synergistic therapies.
Collapse
Affiliation(s)
- Shaofei Yuan
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Linjia Zhu
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yi Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoqiang Chen
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Haibo Jing
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Jiaqi Wang
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Meizhen Liang
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
3
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
4
|
Xu Y, Teng C, Wang Y, Chen D, Yin D, Yan L. Self-enhanced regulation of stable organic radicals with polypeptide nanoparticles for mild second near-infrared phototheranostics. J Colloid Interface Sci 2024; 669:578-589. [PMID: 38729006 DOI: 10.1016/j.jcis.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stable organic radicals have emerged as a promising option to enhance fluorescence quantum yield (QY), gaining traction in medical treatment due to their unique electronic transitions from the ground state (D0) to the doublet excited state (D1). We synthesized a stable dicyanomethyl radical with a NIR-II fluorescence QY of 0.86 %, surpassing many NIR-II organic dyes. Subsequently, amphiphilic polymer-encapsulated nanoparticles (NPs) containing the radical were created, achieving a NIR-II fluorescence QY of 0.32 %, facilitating high-contrast bio-imaging. These CNPPs exhibit self-enhanced photothermal properties, elevating photothermal conversion efficiency (PCE) from 43.5 % to 57.5 % under 915 nm laser irradiation. This advancement enables more efficient photothermal therapy (PTT) with lower dye concentrations and reduced laser power, enhancing both feasibility and safety. Through regular fractionated mild photothermal therapy, we observed the release of damage-associated molecular patterns (DAMPs) and an increase in cytokine expression, culminating in combined mild phototherapy (m-PTT)-mediated immunogenic cell death (ICD). Consequently, we developed an immunostimulatory tumor vaccine, showcasing a novel approach for refining photothermal agents (PTA) and optimizing the PTT process.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
5
|
Bao H, Liu Y, Li H, Qi W, Sun K. Luminescence of carbon quantum dots and their application in biochemistry. Heliyon 2023; 9:e20317. [PMID: 37790961 PMCID: PMC10543222 DOI: 10.1016/j.heliyon.2023.e20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Similar to fullerenes, carbon nanotubes and graphene, carbon dots (CDs) are causing a lot of research work in their own right. CDs are a type of surface-passivated quantum dot that contain carbon atoms. Their distinctive characteristics, such as luminescent emission that varies with size and wavelength, resistance to photobleaching, easy biological binding, lack of toxicity, and economical production without the need for intricate synthetic processes, have led to a noteworthy surge in attention within the research community. Different techniques can be utilized to create these CDs, spanning from basic candle burning to laser ablation. This review article delves into the principles of fluorescence technology, providing insights into how different synthesis methods of quantum dots impact their luminescent properties. Additionally, it highlights the latest applications of quantum dots in catalysis and biomedical fields, with special emphasis on the current status of luminescent properties in biology and chemistry. Towards the end, the article discusses the limitations of quantum dots in current practical applications, pointing out that CDs hold promising potential for future applications.
Collapse
Affiliation(s)
- Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - He Li
- Beijing University of Chemical Technology, Beijing, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Keyan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Yuan Z, He H, Zou J, Wang H, Chen Y, Chen Y, Lan M, Zhao Y, Gao F. Polydopamine-coated ferric oxide nanoparticles for R848 delivery for photothermal immunotherapy in breast cancer. Int J Pharm 2023; 644:123249. [PMID: 37467816 DOI: 10.1016/j.ijpharm.2023.123249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Breast cancer, which requires comprehensive multifunctional treatment strategies, is a major threat to the health of women. To develop multifunctional treatment strategies, we combined photothermal therapy (PTT) with immunotherapy in multifunctional nanoparticles for enhancing the anti-tumor efficacy. Fe3O4 nanoparticles coated with the polydopamine shell modified with polyethylene glycol and cyclic arginine-glycyl-aspartic peptide/anisamide (tNP) for loading the immune adjuvant resiquimod (R848) (R848@tNP) were developed in this research. R848@tNP had a round-like morphology with a mean diameter of 174.7 ± 3.8 nm, the zeta potential of -20.9 ± 0.9 mV, the drug loading rate of 9.2 ± 1.1 %, the encapsulation efficiency of 81.7 ± 3.2 %, high photothermal conversion efficiency and excellent magnetic properties in vitro. Furthermore, this research also explored the anticancer efficacy of nanoparticles against the breast cancer under the near-infrared (NIR) light (808 nm) in vitro and in vivo. R848@tNP-based NIR therapy effectively inhibited the proliferation of breast cancer cells. Moreover, R848@tNP mediated PTT significantly enhanced the maturation of dendritic cells in vitro. Additionally, R848@tNP enhances the anti-tumor effect and evoked an immune response under NIR in vivo. Furthermore, the biosafety of R848@tNP was fully investigated in this study. Collectively, these results clearly demonstrate that R848@tNP, with magnetic resonance imaging characteristics, is a potential therapeutic for breast cancer that combines PTT with the immunotherapy.
Collapse
Affiliation(s)
- Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hai He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, 100000 Beijing, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Li K, Yang D, Liu D. Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjug Chem 2023; 34:283-301. [PMID: 36648963 DOI: 10.1021/acs.bioconjchem.2c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer immunotherapy, such as immune checkpoint blockade, chimeric antigen receptor, and cytokine therapy, has emerged as a robust therapeutic strategy activating the host immune system to inhibit primary and metastatic lesions. However, low tumor immunogenicity (LTI) and immunosuppressive tumor microenvironment (ITM) severely compromise the killing effect of immune cells on tumor cells, which fail to evoke a strong and effective immune response. As an exogenous stimulation therapy, phototherapy can induce immunogenic cell death (ICD), enhancing the therapeutic effect of tumor immunotherapy. However, the lack of tumor targeting and the occurrence of immune escape significantly reduce its efficacy in vivo, thus limiting its clinical application. Nanophotoimmunotherapy (nano-PIT) is a precision-targeted tumor treatment that co-loaded phototherapeutic agents and various immunotherapeutic agents by specifically targeted nanoparticles (NPs) to improve the effectiveness of phototherapy, reduce its phototoxicity, enhance tumor immunogenicity, and reverse the ITM. This review will focus on the theme of nano-PIT, introduce the current research status of nano-PIT on converting "cold" tumors to "hot" tumors to improve immune efficacy according to the classification of immunotherapy targets, and discuss the challenges, opportunities, and prospects.
Collapse
Affiliation(s)
- Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
8
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
9
|
Ran J, Liu T, Song C, Wei Z, Tang C, Cao Z, Zou H, Zhang X, Cai Y, Han W. Rhythm Mild-Temperature Photothermal Therapy Enhancing Immunogenic Cell Death Response in Oral Squamous Cell Carcinoma. Adv Healthc Mater 2023; 12:e2202360. [PMID: 36401600 DOI: 10.1002/adhm.202202360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Indexed: 11/20/2022]
Abstract
The low antitumor efficiency and unexpected thermo-tolerance activation of mild-temperature photothermal therapy (mPTT) severely impede the therapeutic efficacy, thereby the implementation of reasonable mPTT procedure to improve antitumor efficiency is of great significance for clinical transformation. Herein, a rhythm mPTT with organic photothermal nanoparticles (PBDB-T NPs) is demonstrated, synergistically increasing tumor elimination and intense immunogenic cancer cell death (ICD) to elicit tumor-specific immune responses for tumor treatment. Specifically, PBDB-T NPs are characterized by favorable biocompatibility, excellent and controllable photothermal properties, exhibit the properties of noninvasive diagnostic imaging, and effective mPTT against oral squamous cell carcinoma (OSCC). Encouragingly, a temperature-dependent release of damage-associated molecular patterns (DAMPs) is discovered during the mPTT-induced ICD. Meanwhile, orchestrated rhythm mPTT referring to radiotherapy procedure amplifies and balances antitumor efficiency and abundant DAMPs generation to gain optimal immune activation within clinical-recommended hyperthermia temperature compared with conventional PTT. The in vitro and in vivo results show that the rhythm mPTT unites the killing effect and ICD induction, generating strong mPTT efficacy and active tumor-specific adaptive immune responses. The study offers a promising strategy and a new opportunity for the clinical application of mPTT.
Collapse
Affiliation(s)
- Jianchuan Ran
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Tao Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanhui Song
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanchao Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zichen Cao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Huihui Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xinyu Zhang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Wei Han
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| |
Collapse
|
10
|
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer treatment has yet to find a "silver bullet" capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís R Raposo
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rúben Valente
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|