1
|
Li L, Yan M, Zhao Z, Xiao Y, Sun H, Yang H, Cheng X, Pan Y, Zhang H. In Situ Hierarchical Polymerization Enables Ambient-Pressure Drying of High-Performance Al 2O 3-SiO 2 Aerogel Composites for Battery Thermal Protection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26908-26919. [PMID: 40269555 DOI: 10.1021/acsami.5c02783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Ambient pressure drying (APD) is an effective method for producing Al2O3-SiO2 aerogels for thermal insulation, with hydrophobic modification crucial for APD success. However, challenges persist in combining thermal insulation with mechanical strength due to the hindrance of doping Al on hydrophobic modification and the inherent brittleness of pure aerogels. We present an in situ hierarchical polymerization strategy, where the subsequently formed Si-O-Si network protects the preferentially polymerized Al-O-Al network, enabling successful hydrophobic modification and APD. Mullite fibers are incorporated to create a load-bearing framework, surrounded by a 3D aerogel matrix formed from nanoparticle aggregates. The nano aerogel serves as the load-bearing unit and creates compartments to suppress thermal diffusion. The resulting mullite fiber-reinforced Al2O3-SiO2 aerogel composites (MF/ASAs) demonstrate high compressive strength (0.41 MPa at 10% strain), excellent fatigue resistance (2.39% plastic deformation after 1000 cycles), and superior thermal properties (thermal conductivity: 0.034 W·m-1·K-1 at 25 °C and 0.081 W·m-1·K-1 at 1000 °C). A 2 mm-thick MF/ASA effectively blocked thermal runaway in lithium battery modules, with a 526 °C maximum cell-to-cell temperature gap. This approach enables cost-effective, scalable applications of Al2O3-SiO2 aerogels in high-temperature fields.
Collapse
Affiliation(s)
- Longlong Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Mingyuan Yan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Zun Zhao
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Yueyue Xiao
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Huiying Sun
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Hui Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Xudong Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Yuelei Pan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Heping Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Lai D, Chen Z, Wang W, Chen X. Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding. J Colloid Interface Sci 2025; 685:900-911. [PMID: 39874827 DOI: 10.1016/j.jcis.2025.01.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries. Meanwhile, air bubbles guide the self-assembly of nanosheets into a unique closed-cellular structure, which plays a critical role in enhancing EMI shielding performance. The resulting bubble-derived graphene aerogels (BGAs), fabricated through lyophilization and reduction of the foaming inks, exhibit ultralow densities of 0.0033-0.0045 g·cm-3, superior resilience even at cryogenic temperatures (-196 °C in liquid nitrogen), high compressive strength, and a negative Poisson's ratio. Remarkably, these BGAs achieve exceptionally high EMI shielding effectiveness (SE), reaching 103.2 dB with a low SE reflection of merely 4.8 dB. The specific SE (SSE/t), an absolute measure considering density and thickness, reaches an impressive value of 52,252 dB·cm2·g-1, ranking among the highest reported for synthetic foams. The desirable nanosheets-wrapped closed bubble-shaped cells, well-connected porous and conductive networks, and abundant interfaces in the BGAs collectively contribute to the intense interference and multireflection of electromagnetic waves, driving their outstanding shielding performance. This study presents a straightforward and practical approach to construct ultralight and resilient graphene architectures with multiscale designs, offering a promising solution for advanced EMI shielding applications.
Collapse
Affiliation(s)
- Dengguo Lai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF UK
| | - Zhaohui Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 China
| | - Wenxuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 China
| | - Xiaoxiao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China.
| |
Collapse
|
3
|
Li M, Zheng Y, Bai H, Gao W. Advances in Ice-Templated Graphene Aerogels: Fabrication, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19247-19262. [PMID: 40112138 DOI: 10.1021/acsami.5c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Graphene has been one of the most widely explored two-dimensional (2D) assemblies due to its outstanding mechanical, electrical, and thermal properties resulting from its unique characteristics of high anisotropy and strong carbon-carbon bonds. Aerogels, characterized by their ultralow density and ultrahigh specific surface area, stand out as leading porous materials. Therefore, the integration of graphene and aerogels would boost the development of multifunctional porous materials. Among the various methods for the fabrication of aerogels, ice-templating has received significant interest due to its ecofriendly nature as a physical process, its broad applicability across material systems, and its proficiency in constructing abundant structures for multifunctionalities. Consequently, ice-templating has become a prevalent technique for the efficient assembly of graphene nanosheets into aerogels with the inherited properties of graphene, the multifunctionality derived from diverse constituents, and the well-controlled architecture. In this review, we systematically summarize the development and progress of ice-templated graphene-based aerogels. Initially, we introduce the fabrication process of these aerogels, elaborating each step from precursor preparation to freezing, drying, and post-treatment. Subsequently, we demonstrate the multifunctional applications of ice-templated graphene aerogels with various macroarchitectures and microstructures. Finally, this review concludes with a straightforward summary, highlighting the challenges and opportunities associated with the ice-templated fabrication of graphene-based aerogels. This systematic review of graphene aerogels aims to offer new insights into the design and ice-templated fabrication of innovative aerogels with multiscale architecture and multifunctionalities, which are crucial for a variety of engineering applications.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yi Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Feng H, Zhao X, Qian W, Wang Z, Chen P, Tian C, Li BW, He D. Pressure-Assisted Anisotropy in Carbon Nanofiber Films for Smart Electromagnetic Interference Shielding and Joule Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408366. [PMID: 40051174 DOI: 10.1002/smll.202408366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Indexed: 04/25/2025]
Abstract
Intelligent electromagnetic interference (EMI) shielding materials with adjustable properties and performances are garnering significant attention due to the escalating complexity of application scenarios for electronic devices. Also, the trend of miniaturization is calling for lightweight and multifunctional materials. Here, the preparation of highly aligned carbon nanofiber film (a-CNFF) by electrospinning technology and a two-stage carbonization process is proposed, in which the pressurization strategy in the carbonization process promotes the development of highly aligned fiber network structures. The serialized anisotropic structures exhibit an impressive tunability in EMI shielding effectiveness (SE) adjustable from 23.0 to 35.6 dB for linearly polarized electromagnetic waves, and a superior specific SE value (SSE/t) of 34 000 dB cm2 g-1, with an EMI SE per unit thickness of 5791 dB cm-1. Moreover, under a low load voltage of 1.6 V, the peak temperature of the film can be tuned within a wide range of 49.2-120.6 °C. These remarkable performances achieved by simply rotating the film demonstrate adjustable functionalities of the a-CNFF, providing guidelines in the applications of aerospace, military, microelectronics, and wearable devices.
Collapse
Affiliation(s)
- Hao Feng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xin Zhao
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Qian
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhe Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pengfei Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Chao Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bao-Wen Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Daping He
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Feng J, Ma Z, Wu J, Zhou Z, Liu Z, Hou B, Zheng W, Huo S, Pan YT, Hong M, Gao Q, Sun Z, Wang H, Song P. Fire-Safe Aerogels and Foams for Thermal Insulation: From Materials to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411856. [PMID: 39558768 DOI: 10.1002/adma.202411856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
The ambition of human beings to create a comfortable environment for work and life in a sustainable way has triggered a great need for advanced thermal insulation materials in past decades. Aerogels and foams present great prospects as thermal insulators owing to their low density, good thermal insulation, mechanical robustness, and even high fire resistance. These merits make them suitable for many real-world applications, such as energy-saving building materials, thermally protective materials in aircrafts and battery, and warming fabrics. Despite great advances, to date there remains a lack of a comprehensive yet critical review on the thermal insulation materials. Herein, recent progresses in fire-safe thermal-insulating aerogels and foams are summarized, and pros/cons of three major categories of aerogels/foams (inorganic, organic and their hybrids) are discussed. Finally, key challenges associated with existing aerogels are discussed and some future opportunities are proposed. This review is expected to expedite the development of advanced aerogels and foams as fire-safe thermally insulating materials, and to help create a sustainable, safe, and energy-efficient society.
Collapse
Affiliation(s)
- Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhewen Ma
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jianpeng Wu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zhezhe Zhou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Zheng Liu
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Boyou Hou
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Sun
- School of Mechanical, Medical and Process Engineering and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| |
Collapse
|
6
|
Xie M, Qian G, Ye Q, Zhang Y, Wang M, Deng Z, Yu Y, Chen C, Li H, Li D. Dual-crosslinked reduced graphene oxide/polyimide aerogels possessing regulable superelasticity, fatigue resistance, and rigidity for thermal insulation and flame retardant protection in harsh conditions. J Colloid Interface Sci 2024; 676:1011-1022. [PMID: 39068833 DOI: 10.1016/j.jcis.2024.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Polyimide (PI) aerogels have various applications in aerospace, national defense, military industry, and rail transit equipment. This paper reports a series of ultra-lightweight, high elasticity, high strength, low thermal conductivity, and high flame retardant rGO/PI nanocomposite aerogels prepared by the ice templating method. The effects of freezing processes (unidirectional freezing and random freezing), chemical composition, and environmental temperature (-196-200 °C) on the morphology, mechanical, and thermal properties of the aerogels were systematically studied. The results indicated that unidirectional aerogels exhibit anisotropic mechanical properties and thermal performance. Compression in the horizontal direction showed high elasticity, high fatigue resistance, and superior thermal insulation. Meanwhile, in the vertical direction, it demonstrated high strength (PI-G-9 reaching 14 MPa). After 10,000 cycles of compression in the horizontal direction (at 50 % strain), the unidirectional PI-G-5 aerogel still retains 90.32 % height retention, and 78.5 % stress retention, and exhibited a low stable energy loss coefficient (22.11 %). It also possessed a low thermal conductivity (32.8 mW m-1 K-1) and demonstrated good thermal insulation performance by sustaining at 200 °C for 30 min. Interestingly, the elasticity of the aerogels was enhanced with decreasing temperatures, achieving a height recovery rate of up to 100 % when compressed in liquid nitrogen. More importantly, the rGO/PI aerogels could be utilized over a wide temperature range (-196-200 °C) and had a high limiting oxygen index (LOI) ranging from 43.3 to 48.1 %. Therefore, this work may provide a viable approach for designing thermal insulation and flame-retardant protective materials with excellent mechanical properties that are suitable for harsh environments.
Collapse
Affiliation(s)
- Mingzhu Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guangtao Qian
- Collaborative Innovation Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Qibin Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yicai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiqing Deng
- Shanghai Institute of Precision Measurement and Test, Shanghai 201109, China
| | - Youhai Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chunhai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dandan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Zhang Y, Min P, Yue G, Niu B, Li L, Yu ZZ, Zhang HB. Emulsion-Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405950. [PMID: 39224048 DOI: 10.1002/smll.202405950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.
Collapse
Affiliation(s)
- Yiman Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guoyao Yue
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bochao Niu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Xi´an Modern Chemistry Research Institute, Xi´an, 710065, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Jin Y, Yu B, Liu Y, Shen T, Peng M. Ultrastrong, Ductile, Tear- and Folding-Resistant Polyimide Film Doubly Reinforced by an Aminated Rigid-Rod Macromolecule and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46728-46740. [PMID: 39166795 DOI: 10.1021/acsami.4c08364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
As a high-performance polymer with exceptional mechanical, thermal, and insulating properties, polyimide (PI) has been widely used as flexible circuit substrates for microelectronics, portable electronics, and wearable devices. Due to the growing demand for further thinning and lightweighting of electronic products, PI films need to have further enhanced mechanical properties. Traditional nanofiller-reinforced PI films often exhibit reduced ductility and limited improvements in strength. Therefore, it remains a challenge to simultaneously improve the strength and toughness of PI films while preserving their ductility. In this study, we report an exceptionally strong and ductile PI doubly reinforced by one-dimensional rigid-rod para-aramid, poly(p-aminophenylene aminoterephthalamide ((NH2)2-PPTA), and two-dimensional graphene oxide (GO) nanosheets. The amino side groups of (NH2)2-PPTA react with the anhydride end groups of PI, forming covalent bonds. At a (NH2)2-PPTA content of only 0.4 wt %, the (NH2)2-PPTA/PI film displays significantly enhanced mechanical properties. When 0.4 wt % of GO is added together with (NH2)2-PPTA, the tensile strength, tensile toughness, and strain at break reach 284.8 ± 5.3 MPa, 277.9 ± 7.6 MJ/m3, and 132.6 ± 3.8%, which are ∼178, ∼312, and ∼51% higher, respectively, than those of pure PI. Moreover, the doubly reinforced PI film also exhibits a 206% increase in tear strength and significantly enhanced folding resistance. The dual reinforcement of PI with (NH2)2-PPTA and GO improves the mechanical properties more efficiently than any single reinforcing agents previously reported and overcomes the disadvantage of most inorganic nanofillers that reduce ductility.
Collapse
Affiliation(s)
- Yewei Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Boshi Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mao Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Li M, Fan Q, Gao L, Liang K, Huang Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312918. [PMID: 38821561 DOI: 10.1002/adma.202312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Indexed: 06/02/2024]
Abstract
The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.
Collapse
Affiliation(s)
- Mian Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lin Gao
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| |
Collapse
|
10
|
Guo N, Liu J, Xin S, Du C, Liu J, Zhang Y, Xi Y, Wei R, Wang L, Li D. Petal-Shaped Graphene Porous Films with Enhanced Absorption-Dominated Electromagnetic Shielding Performance and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36923-36934. [PMID: 38963067 DOI: 10.1021/acsami.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The absorption-dominated graphene porous materials, considered ideal for mitigating electromagnetic pollution, encounter challenges related to intricate structural design. Herein, petal-like graphene porous films with dendritic-like and honeycomb-like pores are prepared by controlling the phase inversion process. The theoretical simulation and experimental results show that PVP K30 modified on the graphene surface via van der Waals interactions promotes graphene to be uniformly enriched on the pore walls. Benefiting from the regulation of graphene distribution and the construction of honeycomb pore structure, when 15 wt % graphene is added, the porous film exhibits absorption-dominated electromagnetic shielding performance, compared with the absence of PVP K30 modification. The total electromagnetic shielding effectiveness is 24.1 dB, an increase of 170%; the electromagnetic reflection coefficient reduces to 2.82 dB; The thermal conductivity reaches 1.1 W/(m K), representing a 104% increase. In addition, the porous film exhibits improved mechanical properties, the tensile strength increases to 6.9 MPa, and the elongation at break increases by 131%. The method adopted in this paper to control the enrichment of graphene in the pore walls during the preparation of honeycomb porous films by the phase inversion method can avoid the agglomeration of graphene and improve the overall performance of the porous graphene porous films.
Collapse
Affiliation(s)
- Nan Guo
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Jiahao Liu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Siying Xin
- College of Chemistry, Sichuan University, Chengdu 611731, China
| | - Chongpeng Du
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Jiaojiao Liu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Yusong Zhang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Yinshang Xi
- Shaanxi Jintai Chlor-Alkali Chemical Company Limited, Xi'an 719399, China
| | - Renbo Wei
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Lingling Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| | - Dong Li
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- The Research Center of Chemical Engineering Applying Technology for Resource of Shaanxi, Xi'an 710069, China
| |
Collapse
|
11
|
Chai H, Luo J, Li J, Zhong Y, Zhang L, Feng X, Xu H, Mao Z. Lightweight and robust cellulose/MXene/polyurethane composite aerogels as personal protective wearable devices for electromagnetic interference shielding. Int J Biol Macromol 2024; 271:132435. [PMID: 38759856 DOI: 10.1016/j.ijbiomac.2024.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.
Collapse
Affiliation(s)
- Hongbin Chai
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Luo
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Mehmood Z, Shah SAA, Omer S, Idrees R, Saeed S. Scalable synthesis of high-quality, reduced graphene oxide with a large C/O ratio and its dispersion in a chemically modified polyimide matrix for electromagnetic interference shielding applications. RSC Adv 2024; 14:7641-7654. [PMID: 38440276 PMCID: PMC10910857 DOI: 10.1039/d4ra00329b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
High-purity reduced graphene oxide (RGO or rGO) with appreciable conductivity is a desired conductive filler for lightweight polymer composites used in coatings, electronics, catalysts, electromagnetic interference (EMI) shielding, and energy storage devices. However, the intrinsic conductivity and the uniform dispersion of RGO in relatively polar matrices are challenging, leading to poor overall conductivity and performance of the composite material. The reported study improved the RGO intrinsic conductivity by increasing its C/O ratio while also simultaneously enhancing its compatibility with the polyimide (PI) matrix through ester linkages for better dispersion. A two-step reduction method drastically increased the number of structural defects and carbon content in the resulting RGO, corresponding to a maximum ID/IG and C/O of 1.54 and ∼87, respectively. Moreover, the 2D nanosheets with limited hydroxyl (-OH) groups effectively interacted with anhydride-terminated polyamic acid (AT-PAA) through chemical linkages to make high-performance RGO/PI nanocomposites. Consequently, the polymer matrix composites possessed the highest direct current conductivity of 15.27 ± 0.61 S cm-1 for 20 wt% of the prepared RGO. Additionally, the composite material was highly stiff (3.945 GPa) yet flexible (easily bent through 180°), lightweight (∼0.34 g cm-3), and capable of forming thin films (162 ± 15 μm). Unlike most polymer matrix composites, it showcased one of its class's highest thermal stabilities (a weight loss of only 5% at 638 °C). Ultimately, the composite performed as an effective electromagnetic interference (EMI) shielding material in the X-Band (8 to 12 GHz), demonstrating outstanding shielding effectiveness (SE), shielding effectiveness per unit thickness (SEt), specific shielding effectiveness (SSE), and absolute shielding effectiveness (SSEt) of 46 dB, 2778 dB cm-2, 138 dB cm3 g-1, and 8358 dB cm2 g-1, respectively. As a consequence of this research, the high-purity RGO and its high-performance PI matrix nanocomposites are anticipated to find practical applications in conductive coatings and flexible substrates demanding high-temperature stability.
Collapse
Affiliation(s)
- Zahid Mehmood
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad-45650 Pakistan
| | - Syed Aizaz Ali Shah
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad-45650 Pakistan
| | - Saeed Omer
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad-45650 Pakistan
| | - Ramsha Idrees
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad-45650 Pakistan
| | - Shaukat Saeed
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad-45650 Pakistan
| |
Collapse
|
13
|
Wu Y, An C, Guo Y, Zong Y, Jiang N, Zheng Q, Yu ZZ. Highly Aligned Graphene Aerogels for Multifunctional Composites. NANO-MICRO LETTERS 2024; 16:118. [PMID: 38361077 PMCID: PMC10869679 DOI: 10.1007/s40820-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon-carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China.
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yangyang Zong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
14
|
Xiao H, Yang M, Lv J, He X, Chen M, Tan W, Yang W, Zeng K, Hu J, Yang G. Biomineralization-Inspired Confined-Space Fabrication of Polyimide Aerogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2763-2773. [PMID: 38170962 DOI: 10.1021/acsami.3c15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The biomineralization process endows biominerals with unique hierarchically porous structures and physical-chemical properties by filling the restricted microreaction space with amorphous phases before the growth of inorganic crystals. In this paper, a confined-space fabrication method inspired by biomineralization for preparing hierarchically porous polyimide (PI) aerogels and PI-derived carbon aerogels is introduced. The confined structure is established through a self-assembly method of vacuum impregnation and ultrasound-assisted freeze-drying. The hierarchically porous structure is controlled by adjusting the structure characteristics of the confined space and secondary aerogels. Subsequently, a variety of performance demonstrations are conducted to demonstrate the mechanical properties and application prospects in the fields of thermal insulation and electromagnetic shielding of the prepared aerogel.
Collapse
Affiliation(s)
- Hang Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Minrui Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiangbo Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xian He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Menghao Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wenjie Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ke Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianghuai Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gang Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
15
|
Suresh S, Krishnan VG, Dasgupta D, Surendran KP, Gowd EB. Directional-Freezing-Enabled MXene Orientation toward Anisotropic PVDF/MXene Aerogels: Orientation-Dependent Properties of Hybrid Aerogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49567-49582. [PMID: 37842998 DOI: 10.1021/acsami.3c09845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polymer hybrid materials that contain reinforcements with a preferred orientation have received growing attention because of their unique properties and promising applications in multifunctional fields. Herein, anisotropic poly(vinylidene fluoride) (PVDF)/MXene hybrid aerogels with highly ordered delaminated MXene nanosheets and anisotropic porous structures were successfully fabricated by unidirectional freezing of thermoreversible gels followed by a freeze-drying process. The strong interfacial interactions between PVDF chains and abundant functional groups on the surface of MXene enabled the orientation of MXene nanosheets at the boundaries of ice crystals as the semicrystalline PVDF and delaminated MXene nanosheets are squeezed along the freezing direction. These aerogels display distinct properties along the freezing and perpendicular to the freezing (transverse) directions. These anisotropic aerogels are flexible and flame-retardant and possess an anisotropic compression performance, heat transfer, electrical conductivity, and electromagnetic interference (EMI) shielding. Further, by increasing the MXene loadings, the electrical conductivity and EMI shielding performances of hybrid aerogels were significantly improved. The PVDF aerogel showed sticky hydrophobicity with a contact angle of 139°, whereas the contact angle increased significantly in hybrid aerogels (153°) with low water adhesion, making them suitable as self-cleaning materials. The combination of the above characteristics makes these hybrid aerogels potential candidates for a wide range of electronic applications.
Collapse
Affiliation(s)
- Sruthi Suresh
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vipin G Krishnan
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debarshi Dasgupta
- Corporate R&D Center, Momentive Performance Materials Inc., Survey No. 09, Hosur Road, Electronic City (West), Bangalore 560100, India
| | - Kuzhichalil Peethambharan Surendran
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - E Bhoje Gowd
- Materials Science and Technology Division Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
16
|
Wu Z, Yao X, Xing Y. A Review of Nitrogen-Doped Graphene Aerogel in Electromagnetic Wave Absorption. MICROMACHINES 2023; 14:1762. [PMID: 37763925 PMCID: PMC10536735 DOI: 10.3390/mi14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Graphene aerogels (GAs) possess a remarkable capability to absorb electromagnetic waves (EMWs) due to their favorable dielectric characteristics and unique porous structure. Nevertheless, the introduction of nitrogen atoms into graphene aerogels can result in improved impedance matching. In recent years, nitrogen-doped graphene aerogels (NGAs) have emerged as promising materials, particularly when combined with magnetic metals, magnetic oxides, carbon nanotubes, and polymers, forming innovative composite systems with excellent multi-functional and broadband absorption properties. This paper provides a comprehensive summary of the synthesis methods and the EMW absorption mechanism of NGAs, along with an overview of the absorption properties of nitrogen-doped graphene-based aerogels. Furthermore, this study sheds light on the potential challenges that NGAs may encounter. By highlighting the substantial contribution of NGAs in the field of EMW absorption, this study aims to facilitate the innovative development of NGAs toward achieving broadband absorption, lightweight characteristics, and multifunctionality.
Collapse
Affiliation(s)
- Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | | | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
Zhao Z, Zhang L, Song Y, Ma L, Li J, Zhao M, Ji X, Gao J, Song G, Li X. Graphene Oxide/Styrene-Butadiene Latex Hybrid Aerogel with Improved Mechanical Properties by PEI Grafted GO and CNT. Gels 2023; 9:gels9050419. [PMID: 37233010 DOI: 10.3390/gels9050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Graphene oxide aerogel (GOA) has wide application prospects due to its low density and high porosity. However, the poor mechanical properties and unstable structure of GOA have limited its practical applications. In this study, polyethyleneimide (PEI) was used to graft onto the surface of GO and carbon nanotubes (CNTs) to improve compatibility with polymers. Composite GOA was prepared by adding styrene-butadiene latex (SBL) to the modified GO and CNTs. The synergistic effect of PEI and SBL, resulted in an aerogel with excellent mechanical properties, compressive resistance, and structural stability. When the ratio of SBL to GO and GO to CNTs was 2:1 and 7:3, respectively, the obtained aerogel performance was the best, and the maximum compressive stress was 784.35% higher than that of GOA. The graft of PEI on the surface of GO and CNT could improve the mechanical properties of the aerogel, with greater improvements observed with grafting onto the surface of GO. Compared with GO/CNT/SBL aerogel without PEI grafting, the maximum stress of GO/CNT-PEI/SBL aerogel increased by 5.57%, that of GO-PEI/CNT/SBL aerogel increased by 20.25%, and that of GO-PEI/CNT-PEI/SBL aerogel increased by 28.99%. This work not only provided a possibility for the practical application of aerogel, but also steered the research of GOA in a new direction.
Collapse
Affiliation(s)
- Zetian Zhao
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Lina Zhang
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yinghu Song
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Lichun Ma
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jialiang Li
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Min Zhao
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xueliang Ji
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jianfei Gao
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Guojun Song
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiaoru Li
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
18
|
Liu P, Gong D, Cheng X, Chen T, Zhang D, Cai J. Remarkable Conductive Anisotropy of Ag-Coated Glass Microbeads/UV Adhesive Composites Made by Electric Field Induced Alignment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22485-22492. [PMID: 37103909 DOI: 10.1021/acsami.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We successfully prepared highly anisotropic conductive composites (ACCs) made of Ag-coated glass microbeads/UV adhesive via electric field-induced alignment, which was achieved using custom patterned microelectrode arrays. An optimized AC electric field (2 kV/cm, 1 kHz) with pole-plate spacing (50 μm) was utilized to effectively assemble the microbeads into chain arrays, which were precisely positioned on the microelectrode arrays to construct ordered conductive channels. In this case, tangling and cross-connection of the assembled microchains could be reduced, resulting in enhanced performance of the ACCs with high conductivity as well as excellent anisotropy. With a minor loading (3 wt %), the conductivity in the alignment direction could reach ∼24.9 S/m, which was the highest among the reported ACCs to the best of our knowledge, and it could also be 6 orders of magnitude higher than that within the plane. Besides, the samples exhibited high reliability in wire connections with low resistances. Due to these fascinating properties, the ACCs demonstrate promising applications for reliable electrical interconnects and integrated circuits.
Collapse
Affiliation(s)
- Peng Liu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Teng Chen
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
19
|
Zeng J, Chen X, Hu M, Zheng K, Zhang X, Tian X. Thermal conductivity and electromagnetic shielding performance of three-dimensional anisotropic BN/MWCNT epoxy composites under low filling capacity. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
20
|
Guo Z, Ren P, Yang F, Wu T, Zhang L, Chen Z, Huang S, Ren F. MOF-Derived Co/C and MXene co-Decorated Cellulose-Derived Hybrid Carbon Aerogel with a Multi-Interface Architecture toward Absorption-Dominated Ultra-Efficient Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7308-7318. [PMID: 36693013 DOI: 10.1021/acsami.2c22447] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring electromagnetic interference (EMI) shielding materials with ultra-efficient EMI shielding effectiveness (SE) and an absorption-dominated mechanism is urgently required for fundamentally tackling EMI radiation pollution. Herein, zeolitic imidazolate framework-67 (ZIF-67)/MXene/cellulose aerogels were first prepared via a simple solution mixing-regeneration and freeze-drying process. Subsequently, they are converted into electric/magnetic hybrid carbon aerogels (Co/C/MXene/cellulose-derived carbon aerogels) through a facile pyrolysis strategy. ZIF-67-derived porous Co/C could provide the additional magnetic loss capacity. The resultant electric/magnetic hybrid carbon aerogels exhibit a hierarchically porous structure, complementary electromagnetic waves (EMWs) loss mechanisms, and abundant heterointerfaces. The construction of a porous architecture and the synergy of electric/magnetic loss could greatly alleviate the impedance mismatching at the air-specimen interface, which enables more EMWs to enter into the materials for consumption. Moreover, numerous heterointerfaces among Co/C, Ti3C2Tx MXene, and cellulose-derived carbon skeleton induce the generation of multiple polarization losses containing interfacial and dipole polarization, which further dissipate the EMWs. The resultant electric/magnetic hybrid carbon aerogel with a low density (85.6 mg/cm3) achieves an ultrahigh EMI SE of 86.7 dB and a superior absorption coefficient of 0.72 simultaneously. This work not only offers a novel approach to design high-performance EMI shielding materials entailing low reflection characteristic but also broadens the applicability of electric/magnetic hybrid carbon aerogels in aerospace, precision electronic devices, and military stealth instruments.
Collapse
Affiliation(s)
- Zhengzheng Guo
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an710048, China
| | - Penggang Ren
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an710048, China
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an710048, China
| | - Fan Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an710048, China
| | - Tong Wu
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an710048, China
| | - Lingxiao Zhang
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an710048, China
| | - Zhengyan Chen
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an710048, China
| | - Shengqin Huang
- Hunan Aviation Powerplant Research Institute, Zhuzhou412002, China
| | - Fang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an710048, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
21
|
Xue T, Yang Y, Yu D, Wali Q, Wang Z, Cao X, Fan W, Liu T. 3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection. NANO-MICRO LETTERS 2023; 15:45. [PMID: 36752927 PMCID: PMC9908813 DOI: 10.1007/s40820-023-01017-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Construction of advanced electromagnetic interference (EMI) shielding materials with miniaturized, programmable structure and low reflection are promising but challenging. Herein, an integrated transition-metal carbides/carbon nanotube/polyimide (gradient-conductive MXene/CNT/PI, GCMCP) aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection. The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly (amic acid) inks with different CNT contents, where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer. In addition, the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections. Consequently, the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency (68.2 dB) and low reflection (R = 0.23). Furthermore, the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission, which shows a prosperous application prospect in defense industry and aerospace.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Yi Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Dingyi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Qamar Wali
- NUTECH School of Applied Sciences & Humanities, National University of Technology, Islamabad, 44000, Pakistan
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
22
|
Li Y, Shi Q, Peng L, Chang M, Zhou F, Gong C, Wu Y, Zhang L. Carbon nanotubes/cellulose composite aerogels with controllable microstructure for electromagnetic interference shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Li
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Qin Shi
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Longgui Peng
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Mengjie Chang
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Fang Zhou
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Changdan Gong
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Yi Wu
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Liangqing Zhang
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
23
|
Zhu L, Mo R, Yin CG, Guo W, Yu J, Fan J. Synergistically Constructed Electromagnetic Network of Magnetic Particle-Decorated Carbon Nanotubes and MXene for Efficient Electromagnetic Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56120-56131. [PMID: 36472619 DOI: 10.1021/acsami.2c17696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lightweight polymer-based nanostructured aerogels are crucial for electromagnetic interference (EMI) shielding to protect electronic devices and humans from electromagnetic radiation. The construction of three-dimensional (3D) conductive networks is crucial to realize the excellent electromagnetic shielding performance of polymer-based aerogels. However, it is difficult to realize the interconnection of different conductive fillers in the polymer matrix, which limits the further improvement of their performance. Herein, 3D ordered hierarchical porous Fe3O4-decorated carbon nanotube (Fe3O4@CNT)/MXene/cross-linked aramid nanofiber (c-ANF)/polyimide (PI) aerogels were prepared via a unidirectional freezing strategy. Benefiting from the magnetic loss effect of Fe3O4 magnetic nanoparticles, the conductive and dielectric loss effects of CNTs, and the multiple reflections induced by the 3D ordered hierarchical porous structure, the Fe3O4@CNTs/MXene/c-ANFs/PI (FMCP) aerogels with the same contents of 8 wt % of Fe3O4@CNTs and MXene exhibit a high absolute EMI shielding effectiveness (SE) of up to 67.42 dB and a microwave reflection (SER) of 0.60 dB. More importantly, the phase transition of a small amount of MXene to TiO2 optimizes the impedance matching and transmission and then improves the microwave absorption. The FMCP aerogel has an outstanding normalized surface specific SE (SSE/t) which is up to 62,654 dB cm2·g-1. Meantime, the FMCP aerogels also show super-elasticity and could maintain 91.72% of the maximum stress after 1000 cycles of compression release under a fixed deformation of 60%.
Collapse
Affiliation(s)
- Liuliu Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, PR China
| | - Rui Mo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, PR China
| | - Chuan-Gen Yin
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, PR China
| | - Wenyao Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, PR China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, PR China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai200090, PR China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai200093, PR China
| |
Collapse
|
24
|
Wang X, Wang B, Wei S, Zhu X, Wang Y, Liang Y, Guo L, Lu F, Xu B. Preparation and derivation mechanism of methyl methacrylate/nitrile butadiene rubber/graphene oxide composites by ball‐milling. J Appl Polym Sci 2022. [DOI: 10.1002/app.53329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinlei Wang
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Bo Wang
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Shicheng Wei
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Xiaoying Zhu
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Yujiang Wang
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Yi Liang
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Lei Guo
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Fangjie Lu
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| | - Binshi Xu
- National Key Laboratory for Remanufacturing Army Academy of Armored Forces Beijing People's Republic of China
| |
Collapse
|
25
|
Zheng S, Jiang L, Chang F, Zhang C, Ma N, Liu X. Mechanically Strong and Thermally Stable Chemical Cross-Linked Polyimide Aerogels for Thermal Insulator. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50129-50141. [PMID: 36308398 DOI: 10.1021/acsami.2c14007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-performance thermal insulating materials are highly desirable in several fields, especially for thermal insulation of buildings to reduce energy consumption. Owing to the remarkable thermal stability, high porosity, low density, and outstanding mechanical features, polyimide (PI) aerogels have attracted great attention. In this work, chemical cross-linked PI (CCPI) aerogels were fabricated via freeze-drying and thermal imidization, which possess outstanding mechanical properties, good thermal stability, and excellent thermal insulation characteristics. The chemically cross-linked structure can effectively inhibit shrinkage, while retaining the structural integrity, resulting in the lower density and lower shrinkage of the materials. In this paper, completely imidized and highly cross-linked polyimide aerogels were synthesized by using p-phenylenediamine (PDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and the cross-linker 2,3,6,7,14,15-hexaaminotriptycene (HMT). The CCPI aerogels with excellent properties, such as covalently cross-linked chemical structure, low density (0.069 g/cm3), low volume shrinkage (10%), high decomposition temperature (Td5% = 587 °C), and low thermal conductivity (25 mW m-1K-1) are in high demand in the field of thermal insulation. This work furnishes a new method for the development of polymer-based thermal insulation materials for various prospective applications.
Collapse
Affiliation(s)
- Shuai Zheng
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Lei Jiang
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Fan Chang
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Changqi Zhang
- Institute of System Engineering, Beijing, China100010
| | - Ning Ma
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
| | - Xueqiang Liu
- Institute of System Engineering, Beijing, China100010
| |
Collapse
|
26
|
Jiang X, Zhao Z, Zhou S, Zou H, Liu P. Anisotropic and Lightweight Carbon/Graphene Composite Aerogels for Efficient Thermal Insulation and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45844-45852. [PMID: 36166730 DOI: 10.1021/acsami.2c13000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-performance and lightweight carbon aerogels (CAs) have attracted considerable attention in various fields such as electrochemistry, catalysis, adsorption, energy storage, and so on. However, finding an environmentally friendly and efficient preparation method and achieving a controllable performance of CAs are still a challenge. Herein, a series of anisotropic carbon/graphene composite aerogels were synthesized by unidirectional freezing of polyamic acid ammonium salt/graphene oxide (PAS/GO) suspension followed by lyophilization, thermal imidization, and carbonization. The prepared aerogels presented a tubular pore structure oriented along the freezing direction. The GO dispersed in the polymer matrix reinforced the skeleton of aerogels, which significantly inhibited the volume shrinkage during the preparation process, thus giving low densities of 0.074-0.185 g cm-3. In addition, the oriented pore structure endowed the composite aerogels with obviously anisotropic heat insulation performance. The radial thermal conductivity was as low as 0.038 W m-1 K-1 at the density of 0.074 g cm-3. When the initial content of GO rose to 20 phr, the resultant aerogels exhibited a high electrical conductivity of about 0.77 S cm-1 in the radial direction and the electromagnetic interference shielding effectiveness (EMI SE) reached 54.6 dB at the same time. Therefore, this study provided a facile and environmentally friendly method to prepare lightweight and anisotropic carbon aerogels.
Collapse
Affiliation(s)
- Xinyue Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhixi Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shengtai Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengbo Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Mu B, Yu Z, Cui J, Yan W, He H, Wang X, Guo J, Tian L, Yang B, Cui J. Tribological Properties of Oil-Containing Polyimide Aerogels as a New Type of Porous Self-Lubricating Material. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Mu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Zhenghong Yu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Jianbing Cui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Wenrui Yan
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Huan He
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Xia Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Junhong Guo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Li Tian
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Baoping Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| | - Jinfeng Cui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China
| |
Collapse
|
28
|
Xu L, Lu H, Dong Y, Fu Y, Ni Q. Graphene fibre film/polydimethylsiloxane nanocomposites for high-performance electromagnetic interference shielding. NANOSCALE ADVANCES 2022; 4:3804-3815. [PMID: 36133325 PMCID: PMC9470028 DOI: 10.1039/d2na00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Exploration of high-performance electromagnetic interference (EMI) shielding materials has become a trend to address the increasing electromagnetic (EM) wave pollution environment. In this paper, oriented graphene fibre film (GFF)/polydimethylsiloxane (PDMS) nanocomposites with one-ply unidirectional, two-ply cross-ply, and two-ply unidirectional configurations were prepared using wet-spinning and hot-pressing techniques in a two-step process. Due to the anisotropic electrical performance of GFF, the one-ply laminate exhibits EMI shielding anisotropy that is affected by fibre orientation relative to the electric field component in EM waves. The maximum shielding difference at 8.8 GHz is up to 32.0 dB between the fibre orientation parallel to and perpendicular to the electric field component. In addition, we found that adding a layer of GFF is an intuitive method to enhance the shielding efficiency (SE) of GFF/PDMS nanocomposites by providing more interfaces to enhance absorption losses. An optimal EMI shielding performance of a two-ply unidirectional laminate is observed with an SE value of 50.6 dB, which shields 99.999% of EM waves. The shielding mechanisms are also discussed and clarified from the results of both experimental and theoretical analyses by adjusting the GFF structural parameters, such as the fibre orientation, areal density, number of plies and stacking sequence.
Collapse
Affiliation(s)
- Lu Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Haohao Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Yaqin Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Qingqing Ni
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| |
Collapse
|
29
|
Narayanan AP, Surendran KP. Acid polymerized V2O5-PANI aerogels with outstanding specific shielding effectiveness in X, Ku and K bands. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zheng X, Tang J, Wang P, Wang Z, Zou L, Li C. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J Colloid Interface Sci 2022; 628:994-1003. [PMID: 35973264 DOI: 10.1016/j.jcis.2022.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Flexible, lightweight, and durable electromagnetic interference (EMI) shielding materials are urgently required to solve the increasingly serious electromagnetic radiation pollution. Transition metal carbides/nitrides (MXenes) are promising candidates for EMI shielding materials because of their excellent metallic electrical conductivity. However, MXenes are highly susceptible to oxidization when exposed to wet environments, leading to the loss of their functional properties and degradation of reliability and stability. Herein, an interfused core-shell heterogeneous reduced graphene oxide (rGO)/MXene aerogel (GMA) is designed for the first time via coaxial wet spinning and freeze-drying. The fabricated GMAs exhibit excellent EMI shielding performance, and the EMI shielding effectiveness (SE) and specific EMI SE can be up to 83.3 dB and 3119 dB·cm3/g, respectively, which is higher than most carbon-based and MXene-based aerogels and foams. More importantly, GMAs have only a 17.4 % degradation in EMI shielding performance after 120 days due to the protection of hydrophobic graphene sheath, exhibiting superior EMI shielding durability to its MXene film counterpart. Moreover, the hydrophobic GMAs exhibit good oil/water separation and thermal insulation performance. The interfused core-shell GMAs are highly promising for applications in durable EMI shielding, thermal insulation, oil/water separation and sensors, etc.
Collapse
Affiliation(s)
- Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jinhao Tang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lihua Zou
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changlong Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
31
|
Pan Y, Zheng J, Xu Y, Chen X, Yan M, Li J, Zhao X, Feng Y, Ma Y, Ding M, Wang R, He J. Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement. J Colloid Interface Sci 2022; 628:829-839. [DOI: 10.1016/j.jcis.2022.07.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
32
|
Jin L, Cao W, Wang P, Song N, Ding P. Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites. NANO-MICRO LETTERS 2022; 14:133. [PMID: 35699778 PMCID: PMC9198158 DOI: 10.1007/s40820-022-00877-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The multi-functionalization of polymer composites refers to the ability to connect multiple properties through simple structural design and simultaneously achieve multi-performance optimization. The large-scale design and mass production to realize the reasonable structure design of multifunctional polymer composites are urgently remaining challenges. Herein, the multifunctional MXene/graphene/polymer composites with three-dimensional thermally and electrically conductive network structures are fabricated via the utilization of the microstructure of the soft template, and a facile dispersion dip-coating approach. As a result, the polymer composites have a multi-performance improvement. At the MXene and graphene content of 18.7 wt%, the superior through-plane thermal conductivity of polymer composite is 2.44 W m-1 K-1, which is 1118% higher than that of the polymer matrix. The electromagnetic interference (EMI) shielding effectiveness of the sample reaches 43.3 dB in the range of X-band. And the mechanical property of the sample has advanced 4 times compared with the polymer matrix. The excellent EMI shielding and thermal management performance, along with the effortless and easy-to-scalable producing techniques, imply promising perspectives of the polymer composites in the next-generation smart electronic devices.
Collapse
Affiliation(s)
- Liyuan Jin
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Wenjing Cao
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Pei Wang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Na Song
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
33
|
Zhao HY, Yu MY, Liu J, Li X, Min P, Yu ZZ. Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites. NANO-MICRO LETTERS 2022; 14:129. [PMID: 35699797 PMCID: PMC9198159 DOI: 10.1007/s40820-022-00878-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 06/02/2023]
Abstract
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation. Featured by its exceptional thermal conductivity, graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management. Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities. Compared with conventional composite fabrications by directly mixing graphene with polymers, preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances, enabling high manufacturing flexibility and controllability. In this review, we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites. Subsequently, we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications. Finally, our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
Collapse
Affiliation(s)
- Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ming-Yuan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin, Ireland.
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peng Min
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
34
|
Environment-adaptable PAM/PVA Semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Tang X, Lin G, Liu C, Cao T, Xia Y, Yi K, Zhang S, Liu X. Lightweight and Tough Multilayered Composite Based on Poly(aryl ether nitrile)/Carbon Fiber Cloth for Electromagnetic Interference Shielding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ghaffari-Mosanenzadeh S, Aghababaei Tafreshi O, Karamikamkar S, Saadatnia Z, Rad E, Meysami M, Naguib HE. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv Colloid Interface Sci 2022; 304:102646. [PMID: 35378358 DOI: 10.1016/j.cis.2022.102646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
With the rapid advancements in technology and growing aerospace applications, there is a need for effective low-weight and thermally insulating materials. Aerogels are known for their ultra-lightweight and they are highly porous materials with nanopores in a range of 2 to 50 nm with very low thermal conductivity values. However, due to hygroscopic nature and brittleness, aerogels are not used commercially and in daily life. To enhance the mechanical and hydrophobic properties, reinforcement materials such as styrene, cyanoacrylates, epoxy along with hydroxyl, amines, vinyl groups are added to the surface. The addition of organic materials resulted in lower service temperatures which reduce its potential applications. Polyimides (PI) are commonly used in engine applications due to their suitable stability at high temperatures along with excellent mechanical properties. Previous research on polyimide aerogels reported high flexibility or even foldability. However, those works' strategy was mainly limited to altering the backbone chemistry of polyimide aerogels by changing either the monomer's compositions or the chemical crosslinker. This work aims to summarize, categorize, and highlight the recent techniques for improving and tailoring properties of polyimide aerogels followed by the recent advancements in their applications.
Collapse
Affiliation(s)
| | | | - Solmaz Karamikamkar
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Zia Saadatnia
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada
| | - Elmira Rad
- BASF Corporation, 450 Clark Drive, Budd Lake, NJ 07828, United States
| | - Mohammad Meysami
- BASF Corporation, 450 Clark Drive, Budd Lake, NJ 07828, United States
| | - Hani E Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada; Department of Materials Science and Engineering, University of Toronto, Canada.
| |
Collapse
|
37
|
He Z, Li X, Wang H, Su F, Wang D, Yao D, Zheng Y. Synergistic Regulation of the Microstructure for Multifunctional Graphene Aerogels by a Dual Template Method. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22544-22553. [PMID: 35511465 DOI: 10.1021/acsami.2c00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The performance of graphene aerogels (GAs) is based on the microstructure. However, GAs face a challenge of simultaneously controlling the size and alignment of pores strategically. Herein, we initially proposed a simple strategy to construct GAs with an adjustable structure based on the emulsion and ice dual template methods. Specifically, GAs with a honeycomb structure prepared by conventional freezing (CGAs) exhibited a high specific surface of 176 m2/g, superelasticity with a compressive strain of 95%, isotropic compression and thermal insulation performances, as well as an excellent absorption capacity of 150-550 g/g. Instead, the GAs with a bamboo-like network frozen by unidirectional freezing (UGAs) showed anisotropy in compression and thermal insulation behavior. Furthermore, UGAs exhibited incredible special stress (7.9 kPa cm3/mg) along the axial direction twice than that of the radial direction. Meanwhile, the apparent temperature of UGAs was only 45.6 °C when placed on a 120 °C hot stage along the radial direction. Remarkably, the properties of CGAs and UGAs were significantly improved with the adjustment of the microstructure.
Collapse
Affiliation(s)
- Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| |
Collapse
|
38
|
Xu L, Wang L, Zhang W, Xue J, Hou S. The Reinforced Electromagnetic Interference Shielding Performance of Thermal Reduced Graphene Oxide Films via Polyimide Pyrolysis. ACS OMEGA 2022; 7:10955-10962. [PMID: 35415378 PMCID: PMC8991919 DOI: 10.1021/acsomega.1c06767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, thin reduced graphene oxide (GO) composite films were fabricated for electromagnetic interference (EMI) shielding application. High solid content GO slurry (7 wt %) was obtained by dispersing GO clay in polymer solution under high-speed mechanical stirring. A composite film with varied thickness (10-150 μm) could be fabricated in pilot scale. After an optimized thermal annealing procedure, the final product showed good conductivity, which reached 500 S·cm-1. The thin sample (thickness < 0.1 mm) containing 10% polymer showed an enhanced EMI shielding performance of 55-65 dB. The outstanding EMI shielding efficiency as well as good suppleness and industrialized potential of thermal reduced graphene oxide polymer composite films could make a progress on their application in flexible devices as an EMI shielding material.
Collapse
Affiliation(s)
- Lijian Xu
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Ledong Wang
- School
of Physics, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Wenqian Zhang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Jie Xue
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Shifeng Hou
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
39
|
Cheng J, Li C, Xiong Y, Zhang H, Raza H, Ullah S, Wu J, Zheng G, Cao Q, Zhang D, Zheng Q, Che R. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. NANO-MICRO LETTERS 2022; 14:80. [PMID: 35333993 PMCID: PMC8956783 DOI: 10.1007/s40820-022-00823-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 05/05/2023]
Abstract
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
Collapse
Affiliation(s)
- Junye Cheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Yingfei Xiong
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Hassan Raza
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Sana Ullah
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Jinyi Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Deqing Zhang
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
40
|
Yu Y, Yi P, Xu W, Sun X, Deng G, Liu X, Shui J, Yu R. Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances. NANO-MICRO LETTERS 2022; 14:77. [PMID: 35312862 PMCID: PMC8938570 DOI: 10.1007/s40820-022-00819-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 05/04/2023]
Abstract
Conductive hydrogels have potential applications in shielding electromagnetic (EM) radiation interference in deformable and wearable electronic devices, but usually suffer from poor environmental stability and stretching-induced shielding performance degradation. Although organohydrogels can improve the environmental stability of materials, their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability. Here, a MXene organohydrogel is prepared which is composed of MXene network for electron conduction, binary solvent channels for ion conduction, and abundant solvent-polymer-MXene interfaces for EM wave scattering. This organohydrogel possesses excellent anti-drying ability, low-temperature tolerance, stretchability, shape adaptability, adhesion and rapid self-healing ability. Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials. By reasonably controlling the MXene content and the glycerol-water ratio in the gel, MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel. Moreover, MXene organohydrogel shows attractive stretching-enhanced interference effectiveness, caused by the connection and parallel arrangement of MXene nanosheets. This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.
Collapse
Affiliation(s)
- Yuanhang Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng Yi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Wenbin Xu
- Science and Technology on Optical Radiation Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Xin Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Gao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
41
|
Zeng ZH, Wu N, Wei JJ, Yang YF, Wu TT, Li B, Hauser SB, Yang WD, Liu JR, Zhao SY. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2022; 14:59. [PMID: 35138506 PMCID: PMC8828842 DOI: 10.1007/s40820-022-00800-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm-3, leading to an excellent surface-specific SE of 21,317 dB cm2 g-1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.
Collapse
Affiliation(s)
- Zhi-Hui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jing-Jiang Wei
- Laboratory for Cellulose and Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Yun-Fei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Ting-Ting Wu
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Stefanie Beatrice Hauser
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Wei-Dong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiu-Rong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Shan-Yu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland.
| |
Collapse
|
42
|
Hong G, Cheng H, Zhang S, Rojas OJ. Polydopamine-treated hierarchical cellulosic fibers as versatile reinforcement of polybutylene succinate biocomposites for electromagnetic shielding. Carbohydr Polym 2022; 277:118818. [PMID: 34893235 DOI: 10.1016/j.carbpol.2021.118818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
There is a need for scalable technologies to reduce electromagnetic pollution with materials of low density and low carbon footprint. Unfortunately, environmental adaptability, economic feasibility and lightweight are factors that are still far from optimal in most electromagnetic shielding materials. Herein, we address these challenges with polybutylene succinate (PBS) reinforced with bamboo fibers functionalized with Fe3O4 nanoparticles (Fe3O4-NPs) and polypyrrole (PPy). Such hybrid system was compatibilized via polydopamine (PDA) coupling, demonstrating magnetic, dielectric and interfacial polarization losses as well as distributed reflection, yielding a shielding effectiveness of ~36.9 dB. Simultaneously, the composite displayed gains in tensile strength and modulus (by 18 and 38%, respectively) combined with improved flexural strength and modulus (by 33% and 15%, respectively). Overall, this work demonstrates a new pathway toward low cost and lightweight bio-based materials for high-performance electromagnetic shielding.
Collapse
Affiliation(s)
- Gonghua Hong
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, Espoo, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Haitao Cheng
- Bamboo and Rattan Science and Technology Key Laboratory of the State Forestry Administration, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Shuangbao Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, Espoo, P.O. Box 16300, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
43
|
Song P, Ma Z, Qiu H, Ru Y, Gu J. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. NANO-MICRO LETTERS 2022; 14:51. [PMID: 35084576 PMCID: PMC8795265 DOI: 10.1007/s40820-022-00798-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 05/21/2023]
Abstract
With the rapid development of fifth-generation mobile communication technology and wearable electronic devices, electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention. Therefore, the design and development of highly efficient EMI shielding materials are of great importance. In this work, the three-dimensional graphene oxide (GO) with regular honeycomb structure (GH) is firstly constructed by sacrificial template and freeze-drying methods. Then, the amino functionalized FeNi alloy particles (f-FeNi) are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel. Finally, the rGH@FeNi/epoxy EMI shielding composites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin. Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect, the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt% (rGH and f-FeNi are 1.2 and 0.9 wt%, respectively) exhibit a high EMI shielding effectiveness (EMI SE) of 46 dB, which is 5.8 times of that (8 dB) for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction. At the same time, the rGH@FeNi/epoxy composites also possess excellent thermal stability (heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0 °C respectively) and mechanical properties (storage modulus is 8296.2 MPa).
Collapse
Affiliation(s)
- Ping Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yifan Ru
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
44
|
Chen Y, Luo H, Guo H, Liu K, Mei C, Li Y, Duan G, He S, Han J, Zheng J, E S, Jiang S. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr Polym 2022; 276:118799. [PMID: 34823805 DOI: 10.1016/j.carbpol.2021.118799] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
With the development of the electronic industry bringing convenience to people, a series of caused electromagnetic pollution problems (e.g., electromagnetic interference (EMI)) have recently also become urgent tasks. In this work, an anisotropic composite sponge consisting of cellulose nanofibrils (CNFs) and chemical co-precipitated silver nanowire (AgNW)@Fe3O4 composites was successfully prepared. Due to the introduction of anisotropic structures and the synergistic effect among CNFs, AgNWs, and Fe3O4, this composite sponge exhibited low density (16.76 mg/cm3), good saturation magnetization (4.21 emu/g) and electrical conductivity (0.02 S/cm), and anisotropic EMI shielding ability. By adjusting the proportion (1:0.3) between AgNWs and Fe3O4 and their loading (0.15 vol%) inside the sponge, the reflection loss of the sponge with the improved interface impedance mismatch was only 2.3 dB, accounting for 7.2% of the total loss. It is expected to become a promising EMI shielding material, especially for effectively alleviating the secondary reflection EM pollution.
Collapse
Affiliation(s)
- Yiming Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Heng Luo
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Hongtao Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Changtong Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
45
|
Jin L, Wang P, Cao W, Song N, Ding P. Isolated Solid Wall-Assisted Thermal Conductive Performance of Three-Dimensional Anisotropic MXene/Graphene Polymeric Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1747-1756. [PMID: 34949092 DOI: 10.1021/acsami.1c20267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The introduction of three-dimensional (3D) continuous conformations in polymer materials is a convincing proposal for acquiring the desirable multifunction to fulfill the urgent demands of highly integrated electronic devices. However, the limited functional design of the filled aligned network remains challenging. Herein, directional self-assembly 3D MXene/graphene aerogels are fabricated as conductive networks for polyethylene glycol (PEG) matrix. Based on the uniaxial and biaxial ice template method, the temperature gradient affects the aligned arrangement of the 3D microstructure. The biaxial PEG/MXene/GR composites exhibit an enhanced through-plane thermal conductivity of 1.64 W m-1 K-1 at 10.6 vol % content, which is 522% higher than that of pure PEG. The influence of the biaxial self-assembly strategy compared with that of the uniaxial one on the thermal conductivity reaches the highest 333% when the weight ratio equals 1:1. Meanwhile, the same difference also occurs in the electromagnetic shielding interference (EMI) property. The advanced EMI-shielding effectiveness of the biaxial PM1G1 composites reaches ∼36 dB at the 2.5 mm thickness. This research provides valuable guidance for designing high-performance applications of anisotropic thermal management and EMI shielding in 5G telecommunications and mobile electronic devices.
Collapse
Affiliation(s)
- Liyuan Jin
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Pei Wang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenjing Cao
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Na Song
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| |
Collapse
|
46
|
Zheng S, Jiang L, Zhang C, Ma N, Liu X. Facile and environment-friendly preparation of high-performance polyimide aerogels using water as the only solvent. Polym Chem 2022. [DOI: 10.1039/d1py01573g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study described a facile and environmentally friendly method for preparing polyimide (PI) aerogels via sol-gel process and freeze-drying without the use of organic solvents. The prepared PI aerogels showed...
Collapse
|
47
|
Xia B, Zhang X, Wang Y, Li T, Jiang J, Chen M, Liu T, Dong W. Multilayer cross‐linking polyetherimide/
Ti
3
C
2
T
x
MXenes
material with pores channel structure for electromagnetic interference shielding. J Appl Polym Sci 2021. [DOI: 10.1002/app.52075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Jie Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
48
|
Zhou Y, Zhang S, Zheng F, Lu Q. Intrinsically Black Polyimide with Retained Insulation and Thermal Properties: A Black Anthraquinone Derivative Capable of Linear Copolymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhou
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai 200092, China
| | - Songyang Zhang
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai 200092, China
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai 200240, China
| |
Collapse
|
49
|
Feng C, Yu SS. 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage. Polymers (Basel) 2021; 13:3614. [PMID: 34771171 PMCID: PMC8588507 DOI: 10.3390/polym13213614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polyimide (PI)-based aerogels have been widely applied to aviation, automobiles, and thermal insulation because of their high porosity, low density, and excellent thermal insulating ability. However, the fabrication of PI aerogels is still restricted to the traditional molding process, and it is often challenging to prepare high-performance PI aerogels with complex 3D structures. Interestingly, renewable nanomaterials such as cellulose nanocrystals (CNCs) may provide a unique approach for 3D printing, mechanical reinforcement, and shape fidelity of the PI aerogels. Herein, we proposed a facile water-based 3D printable ink with sustainable nanofillers, cellulose nanocrystals (CNCs). Polyamic acid was first mixed with triethylamine to form an aqueous solution of polyamic acid ammonium salts (PAAS). CNCs were then dispersed in the aqueous PAAS solution to form a reversible physical network for direct ink writing (DIW). Further freeze-drying and thermal imidization produced porous PI/CNC composite aerogels with increased mechanical strength. The concentration of CNCs needed for DIW was reduced in the presence of PAAS, potentially because of the depletion effect of the polymer solution. Further analysis suggested that the physical network of CNCs lowered the shrinkage of aerogels during preparation and improved the shape-fidelity of the PI/CNC composite aerogels. In addition, the composite aerogels retained low thermal conductivity and may be used as heat management materials. Overall, our approach successfully utilized CNCs as rheological modifiers and reinforcement to 3D print strong PI/CNC composite aerogels for advanced thermal regulation.
Collapse
Affiliation(s)
- Chiao Feng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
50
|
Zhang J, Zhang J, Shuai X, Zhao R, Guo T, Li K, Wang D, Ma C, Li J, Du J. Design and Synthesis Strategies: 2D Materials for Electromagnetic Shielding/Absorbing. Chem Asian J 2021; 16:3817-3832. [PMID: 34585842 DOI: 10.1002/asia.202100979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) materials possess special physical and chemical properties. They have been proved to have potential application advantage in the microwave absorption (MA) and electromagnetic interference (EMI) shielding. Particularly, they exhibit positive shielding and absorbing response to EMI. Here, the research progress of preparation, electromagnetic performance and microwave shielding/absorbing mechanisms of 2D composite materials are introduced. Effective preparation routes including introducing heteroatoms, constructing unique structures and 2D composite materials are described. Furthermore, the application prospects and challenges for the development of novel EMI materials are expatiated.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Jianchao Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Xiaofeng Shuai
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Ruihua Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Kunming Tobacco Co. Ltd., 21 Dachang South Road, Taiyuan, Shanxi, P. R. China
| | - Tianyu Guo
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Kexun Li
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Donghong Wang
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Chen Ma
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Jianping Du
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| |
Collapse
|