1
|
Gao Q, Wang W, Sun S, Yang Y, Mao K, Yang Y, Wu ZS. Bundling gold nanorods with RCA-produced DNA tape into an intelligently reconfigurable nanocluster bomb for multimodal precision cancer therapy. Mater Today Bio 2025; 32:101718. [PMID: 40236812 PMCID: PMC11999372 DOI: 10.1016/j.mtbio.2025.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Via proposing an innovative assembly technique, we bundle cell-targeting aptamer-modified gold nanorods (AuNRs) with RCA product (RCA-p) tape into a reconfigurable nanocluster (ARGN) bomb for multimodal precision cancer therapy. Because each ARGN has 10 individual AuNRs, the short time of laser irradiation can make the temperature increase to 75 °C much higher than the lethal temperature of tumor cells, enabling the efficient photothermal therapy (PTT). Moreover, both siRNA-Plk1 (2820 per ARGN) and chemotherapeutic agents (15860 per ARGN) can be loaded into two specifically-designed containers in the internal cavity. Because the glomeroplasmatic structure enhances the resistance to enzymatic degradation, ARGN bomb can protect siRNAs from the digestion and avoid Dox leakage during in vivo circulation. Moreover, the spontaneous structural reorganization allows aptamers in the interior cavity move outward to the exterior surface, which magically offers the compensation of degraded aptamers and impair persistent in vivo cell targeting ability. The external stimuli (laser irradiation) promotes the release of chemotherapeutic agents and initiates the PTT/chemotherapy outcome, while endogenous stimuli (intracellular biomarkers) causes almost 100 % release of siRNA-Plk1 species and induces RNA interference therapy, completely inhibiting tumor growth without detectable off-target toxicity.
Collapse
Affiliation(s)
- Qian Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, China
| | - Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
| | - Kaili Mao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuxi Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 305108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
2
|
Dash P, Thirumurugan S, Chen YL, Dhawan U, Lin YC, Lin CP, Liu WC, Tseng CL, Chung RJ. Development of iron oxide based-upconversion nanocomposites for cancer therapeutics treatment. Int J Pharm 2025; 675:125545. [PMID: 40174808 DOI: 10.1016/j.ijpharm.2025.125545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Administration of therapeutic strategies alongside magnetic multifunctional nanocomposites has displayed improved cancer prognosis. However, the clinical use of this combination is limited owing to poor bioimaging performance, low biocompatibility, restricted tissue penetration in ultraviolet/visible regions, and low therapeutic efficacy of nanocomposites. To overcome these existing challenges, we designed iron oxide (Fe3O4)-based upconversion nanoparticles (UCNPs). Fe3O4 nanoparticles were synthesized via facile solvothermal method and incorporated into mesoporous silica (mS) layer (Fe3O4@mS). Fe3O4@mS nanoparticles were further decorated onto the surface of the UCNPs as a core material (UCNP-Fe3O4@mS, FMUP). Methotrexate (MTX) an efficient anticancer drug was loaded onto the mesoporous silica to produce FMUP-MTX nanocomposite. The FMUP nanocomposite displayed excellent photothermal therapy and showed 43% photothermal conversion efficiency. The designed nanocomposite has ability to decompose H2O2 to generates hydroxyl radical that promote chemodynamic therapy effect due to attribution of Fenton reaction. FMUP-MTX nanocomposite possessed improved chemotherapeutic performance under NIR laser irradiation. Further, T2-weighted magnetic resonance imaging performance of nanocomposite was observed. In vitro studies shown that cell viability was decreased to 25% under laser irradiation due to the therapeutic effect. In vivo studies exhibited that the FMUP-MTX nanocomposite inhibited the tumor growth with the laser irradiation. Therefore, these nanocomposites can be considered as a promising candidate for cancer therapeutics treatment.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yen-Lin Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wai-Ching Liu
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, 999077, Hong Kong
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei city 11031, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei city 11031, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei city 11031, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
3
|
Zhang Y, Yang Z, Chen M, Xue Z, Chen J, Zhao M, Li Y, Kang S, Dai B, Zheng L, Zhuang S, Zhang D. Transcriptomic modifications across the genome and potential hazards of pulmonary fibrosis caused by metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178504. [PMID: 39848150 DOI: 10.1016/j.scitotenv.2025.178504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/26/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis. The results indicated that the stimulation of MOF-199 enhanced ROS generation, upregulated cytoplasmic Ca2+ levels, then activated the Grb2/SOS/Ras/Raf pathway, induced cell apoptosis, and ultimately resulted in lung fibroblasts through TGF-β secretion. The results were validated in vitro and in vivo. Therefore, it is necessary to carefully evaluate the nanosafety of MOF-199 in environment treatments.
Collapse
Affiliation(s)
- Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhiwei Xue
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mantong Zhao
- Department of Physics and Electronic Engineering, Heze University, Heze 274015, PR China
| | - Yuhao Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Chen G, Yang F, Wu D, Yang J, Hu X, Liu L, Kang Y, Fan W, Mou X, Cai Y, Hou C. Naphthalene Diimide-Based Polycyclic Conjugated Molecule Composite CoFe 2O 4 Nanohybrids for Photoacoustic Imaging-Mediated Photo-/Sonic Therapy. Adv Healthc Mater 2024; 13:e2401074. [PMID: 39023394 DOI: 10.1002/adhm.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The complex and harsh tumor microenvironment imped the efficacy of single-modality tumor therapy. With the advantages of biosafety, organic/inorganic nanohybrids have attracted more and more interest of researchers, and it is critical to investigate the development of highly efficient nanohybrids for multimodality combination therapy of cancers. Herein, a naphthalene diimide-based polycyclic conjugated molecule (NDI-S) is designed and synthesized, which has broader light absorption in the near infrared (NIR) region, outstanding photothermal conversion ability, and excellent photostability. Inorganic CoFe2O4 is synthesized via a solvothermal technique, which can produce much more reactive oxygen species (ROS) as a sonosensitizer when activated by ultrasonic (US). NDI-S and CoFe2O4 are then nanoprecipitated to create the organic/inorganic nanohybrids, NDI-S@CoFe2O4. According to the results of in vitro and in vivo experiments, NDI-S@CoFe2O4 can serve as a multifunctional nanoplatform for multimodal treatment of tumors in combination with photothermal/photodynamic/sonodynamic- therapy under the guidance of photoacoustic imaging, which provides a new vision of the development of organic/inorganic nanohybrids for cancer theranostics.
Collapse
Affiliation(s)
- Gongning Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- College of Public Health, Hangzhou Medical College, Hangzhou, 310059, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Danping Wu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Jun Yang
- School of Environmental and Chemical Engineering, Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiaojuan Hu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yehui Kang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Weijiao Fan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Chunjie Hou
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
5
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
6
|
Ferro-Flores G, Ancira-Cortez A, Ocampo-García B, Meléndez-Alafort L. Molecularly Targeted Lanthanide Nanoparticles for Cancer Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:296. [PMID: 38334567 PMCID: PMC10857384 DOI: 10.3390/nano14030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Alejandra Ancira-Cortez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Laura Meléndez-Alafort
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy
| |
Collapse
|
7
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
8
|
Cao H, Deng H, Wan H, Luan S, Shen S, Gui C. Superhydrophobic Multifocal Microlens Array with Depth-of-Field Detection for a Humid Environment. ACS OMEGA 2023; 8:48572-48581. [PMID: 38144063 PMCID: PMC10733981 DOI: 10.1021/acsomega.3c08680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Microlens array (MLA) has been widely applied in augmented reality and optical imaging. When used in a humid environment or medical endoscopy, MLA needs to be both superhydrophobic and multifocal. However, it is not easy to achieve both superhydrophobic and multifocal function by integrating superhydrophobic and multifocal structures on the same surface by means of a simple, efficient, and precise method. In this paper, the superhydrophobic multifocal MLA with superhydrophobic properties and multifocal functions is successfully designed for preparation based on a method of 3D lithography and soft lithography. The 3D lithography can further help the preparation of a multifocal MLA with varying apertures and a multistep superhydrophobic structure with a round dome. The superhydrophobic multifocal MLA with periods 50 and 120 μm has perfect superhydrophobic property. The water droplet can slide and bounce off the surface at a roll angle of less than 12.9° with both multifocal and integrated imaging function, as well as up to 397 μm depth-of-field (DOF) detection range; this greatly exceeds the conventional MLA. The perfect superhydrophobic and optical property can be achieved in an extremely humid environment. The superhydrophobic multifocal MLA proposed in this paper has a promising prospect for actual practices.
Collapse
Affiliation(s)
- Hao Cao
- The
Institute of Technological Sciences, Wuhan
University, Wuhan 430072, China
| | - Hongfeng Deng
- The
Institute of Technological Sciences, Wuhan
University, Wuhan 430072, China
| | - Hui Wan
- School
of Power and Mechanical Engineering, Hubei Key Laboratory of Electronic
Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| | - Shiyi Luan
- The
Institute of Technological Sciences, Wuhan
University, Wuhan 430072, China
| | - Su Shen
- School
of Optoelectronic Science and Engineering, Collaborative Innovation
Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Chengqun Gui
- The
Institute of Technological Sciences, Wuhan
University, Wuhan 430072, China
| |
Collapse
|
9
|
Liao H, Ye S, Lin P, Pan L, Wang D. In situ growth of lanthanides-doped nanoparticles inside zeolites with enhanced upconversion emission for gallic acid detection. J Colloid Interface Sci 2023; 652:1297-1307. [PMID: 37659302 DOI: 10.1016/j.jcis.2023.08.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
The combination of upconversion nanoparticles (UCNPs) with porous zeolites could enable the development of multifunctional composites and extend their optical applications in sensing, detection and biomedical monitoring. Herein, a series of high luminescent UCNPs@Zeolites nano-micro composites were constructed via the in situ growth strategy, by taking the low phonon-energy fluoride nanoparticles of NaLnF4 (Ln = Y, Gd) as doping hosts for Er3+/Yb3+, desilicated FAUY and ZSM-5 as the target zeolites. Benefiting from the formation of tightly combined interfaces between the UCNPs and the target zeolites that effectively passive the surface defects of UCNPs, three orders of magnitude of improved upconversion emission in maximum was obtained under 980 nm excitation through afterward heat treatment at 400 ℃. Moreover, the pre-exchange of Yb3+ into target zeolites before the in situ growth of UCNPs is another feasible approach to drastically improve the upconversion emission intensity of the UCNPs@Zeolites nano-micro composites. By taking NaGdF4:Yb,Er@DSZSM-5/HT as an example probe, the detection of GA was demonstrated and the detection ability of which is super than that of the corresponding bare NaGdF4:Yb,Er UCNPs. This research provided a universal approach to construct the UCNPs@Zeolites nano-micro composites with varied upconversion emission colors simply by choosing activator ions, which therefore indicates wide potential applications.
Collapse
Affiliation(s)
- Huazhen Liao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Song Ye
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Peixuan Lin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Ling Pan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
10
|
Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models. Photodiagnosis Photodyn Ther 2023; 43:103596. [PMID: 37148952 DOI: 10.1016/j.pdpdt.2023.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Melanoma is a highly metastatic skin cancer with limited response to current therapies in advanced patients. To overcome resistance, novel treatments based on photodynamic and photothermal therapies (PDT and PTT, respectively) have been developed to treat melanoma in preclinical murine models. Despite success inhibiting implanted tumors' growth, there has been limited evaluation of their long-term effectiveness in preventing metastasis, recurrence, or improving survival rates. METHODS Combined and multidrug therapies based on PDT and/or PTT to treat cutaneous malignant melanoma in the preclinical mouse model were reviewed from 2016 onwards. PubMed® was the database in which the search was performed using mesh search algorithms resulting in fifty-one studies that comply with strict inclusion rules of screening. RESULTS B16 melanoma-bearing C57BLACK6 mice model was the most used to evaluate immunotherapies, chemotherapies, and targeted therapies in combination with PDT and/or PTT. Combined therapies demonstrated a synergistic effect, resulting in intense antitumor activity. The most extensively studied protocol for developing metastatic models involved the intravenous administration of malignant cells, with some combined therapies being tested. Furthermore, the review presents the composition of the nanostructures utilized for delivering the drugs and light-responsive agents and the treatment plans for each combined approach. CONCLUSIONS The identified mechanisms to simulate metastatic melanoma models and the therapeutic combinations may aid in evaluating the systemic protection of combined PDT and PTT-based therapies, particularly in conducting short-term preclinical experiments. Such simulations could have relevance to clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico.
| |
Collapse
|
11
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Macchione MA, Strumia MC. Stimuli-responsive nanosystems as smart nanotheranostics. ADVANCED NANOFORMULATIONS 2023:363-396. [DOI: 10.1016/b978-0-323-85785-7.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Luan S, Xu P, Zhang Y, Xue L, Song Y, Gui C. Flexible Superhydrophobic Microlens Arrays for Humid Outdoor Environment Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53433-53441. [PMID: 36394606 PMCID: PMC9716522 DOI: 10.1021/acsami.2c17128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A microlens array (MLA) is an essential optical imaging device in the applications of augmented and virtual realities. The imaging of MLA would become blurry in a humid outdoor atmosphere. While the incorporation of superhydrophobicity to MLA would prevent the adhesion of droplets, the complex structure and the multiple fabrication process reduce the capability of optical imaging of MLA. Herein, a flexible superhydrophobic MLA with good optical imaging capability is successfully fabricated by the combination of 3D direct laser writing (DLW) and soft lithography. 3D DLW allows the fabrication of MLA with a hierarchical pillar array (h-MLA) in one step, which ensures good optical properties of the resulting polydimethylsiloxane (PDMS) h-MLA. The resulting h-MLAs with pitches ranging between 50 and 100 μm are superhydrophobic from which water droplets slide away at a sliding angle smaller than 15.6° and bounce off from the surface. Meanwhile, the hierarchical pillar array has a limited impact on the imaging capability and the field of view of h-MLA. With an optimized pitch of 60 μm, h-MLA has a transparency as good as MLA. Moreover, PDMS h-MLA retains excellent optical and superhydrophobic properties when bent and in an extremely humid environment. We believe that the proposed h-MLA could find applications in outdoor environments.
Collapse
Affiliation(s)
- Shiyi Luan
- School
of Power and Mechanical Engineering, Wuhan
University, Wuhan430072, China
| | - Peng Xu
- School
of Power and Mechanical Engineering, Wuhan
University, Wuhan430072, China
| | - Yurong Zhang
- The
Institute of Technological Sciences, Wuhan
University, Wuhan430072, China
| | - Longjian Xue
- School
of Power and Mechanical Engineering, Wuhan
University, Wuhan430072, China
- The
Institute of Technological Sciences, Wuhan
University, Wuhan430072, China
| | - Yi Song
- The
Institute of Technological Sciences, Wuhan
University, Wuhan430072, China
- School
of Microelectronic, Wuhan University, Wuhan430072, China
| | - Chengqun Gui
- The
Institute of Technological Sciences, Wuhan
University, Wuhan430072, China
| |
Collapse
|
14
|
Chen H, Ding B, Ma P, Lin J. Recent progress in upconversion nanomaterials for emerging optical biological applications. Adv Drug Deliv Rev 2022; 188:114414. [PMID: 35809867 DOI: 10.1016/j.addr.2022.114414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 02/08/2023]
Abstract
The recent advances of upconversion nanoparticles (UCNPs) have made them the ideal "partner" for a variety of biological applications. In this review, we describe the emerging biological optical applications of UCNPs, focus on their potential therapeutic advantages. Firstly, we briefly review the development and mechanisms of upconversion luminescence, including organic and inorganic UCNPs. Next, in the section on UCNPs for imaging and detection, we list the development of UCNPs in visualization, temperature sensing, and detection. In the section on therapy, recent results are described concerning optogenetics and neurotherapy. Tumor therapy is another major part of this section, including the synergistic application of phototherapy such as photoimmunotherapy. In a special section, we briefly cover the integration of UCNPs in therapeutics. Finally, we present our understanding of the limitations and prospects of applications of UCNPs in biological fields, hoping to provide a more comprehensive understanding of UCNPs and attract more attention.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Yang Z, Fan Y, Chen M, Zhao M, Dai B, Zheng L, Zhang D. Cytotoxicity Effect of Iron Oxide (Fe3O4)/Graphene Oxide (GO) Nanosheets in Cultured HBE Cells. Front Chem 2022; 10:888033. [PMID: 35615314 PMCID: PMC9124895 DOI: 10.3389/fchem.2022.888033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Iron oxide (Fe3O4), a classical magnetic material, has been widely utilized in the field of biological magnetic resonance imaging Graphene oxide (GO) has also been extensively applied as a drug carrier due to its high specific surface area and other properties. Recently, numerous studies have synthesized Fe3O4/GO nanomaterials for biological diagnosis and treatments, including photothermal therapy and magnetic thermal therapy. However, the biosafety of the synthesized Fe3O4/GO nanomaterials still needs to be further identified. Therefore, this research intended to ascertain the cytotoxicity of Fe3O4/GO after treatment with different conditions in HBE cells. The results indicated the time-dependent and concentration-dependent cytotoxicity of Fe3O4/GO. Meanwhile, exposure to Fe3O4/GO nanomaterials increased reactive oxygen species (ROS) levels, calcium ions levels, and oxidative stress in mitochondria produced by these nanomaterials activated Caspase-9 and Caspase-3, ultimately leading to cell apoptosis.
Collapse
Affiliation(s)
- Yule Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Yatian Zhang
- Medical College Jining Medical University, Jining, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Fan
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Mantong Zhao
- Department of Physics and Electronic Engineering, Heze University, Heze, China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Lulu Zheng, ; Dawei Zhang,
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Lulu Zheng, ; Dawei Zhang,
| |
Collapse
|
16
|
Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022; 347:89-103. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.
Collapse
|
17
|
Yuan H, Zhang L, Ma T, Huang J, Nie C, Cao S, Xiang X, Ma L, Cheng C, Qiu L. Spiky Cascade Biocatalysts as Peroxisome-Mimics for Ultrasound-Augmented Tumor Ablation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15970-15981. [PMID: 35348330 DOI: 10.1021/acsami.1c25072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrasound (US)-augmented tumor ablation with sono-catalysts has emerged as a promising therapeutic modality due to high tissue penetration, nonionizing performance, and low cost of US-based therapies. Developing peroxisome-mimetic cascade biocatalysts for US-augmented synergistic treatment would further effectively reduce the dependence of the microenvironment H2O2 and enhance the tumor-localized reactive oxygen species (ROS) generation. Here, we proposed and synthesized a novel spiky cascade biocatalyst as peroxisome-mimics that consist of multiple enzyme-mimics, i.e., glucose oxidase-mimics (Au nanoparticles for producing H2O2) and heme-mimetic atomic catalytic centers (Fe-porphyrin for ROS generation), for US-augmented cascade-catalytic tumor therapy. The synthesized spiky cascade biocatalysts exhibit an obvious spiky structure, uniform nanoscale size, independent of endogenous H2O2, and efficient US-responsive biocatalytic activities. The enzyme-mimetic biocatalytic experiments show that the spiky cascade biocatalysts can generate abundant ·OH via a cascade chemodynamic path and also 1O2 via US excitation. Then, we demonstrate that the spiky cascade biocatalysts show highly efficient ROS production to promote melanoma cell apoptosis under US irradiation without extra H2O2. Our in vivo animal data further reveal that the proposed US-assisted chemodynamic cascade therapies can significantly augment the therapy efficacy of malignant melanoma. We suggest that these efficient peroxisome-mimetic cascade-catalytic strategies will be promising for clinical tumor therapies.
Collapse
Affiliation(s)
- Hongmei Yuan
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.,Department of Ultrasound, Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lingyan Zhang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Tian Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chuanxiong Nie
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sujiao Cao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Wang H, Yang W, Bian K, Zeng W, Jin X, Ouyang R, Xu Y, Dai C, Zhou S, Zhang B. Oxygen-Deficient BiOCl Combined with L-Buthionine-Sulfoximine Synergistically Suppresses Tumor Growth through Enhanced Singlet Oxygen Generation under Ultrasound Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104550. [PMID: 34910856 DOI: 10.1002/smll.202104550] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Excess generation of reactive oxygen species (ROS) based on sensitizers under ultrasound (US) excitation can cause the death of tumor cells via oxidative damage, but sonosensitizers are largely unexplored. Herein, oxygen-deficient black BiOCl (B-BiOCl) nanoplates (NPs) are reported, with post-treatment on conventional BiOCl by simple UV excitation, showing stronger singlet oxygen (1 O2 ) generation than commercial TiO2 nanoparticles and their derivatives under US irradiation. Moreover, L-buthionine-sulfoximine (BSO), a GSH biosynthesis inhibitor, is incorporated into B-BiOCl NPs. The authors find that BSO can be released owing to the degradation of B-BiOCl NPs in the presence of acid and GSH, which are overexpressed in tumors. The results show that BSO/B-BiOCl-PEG NPs have a multifunctional synergistic effect on improving ROS production. In particular, BiOCl has remarkable near-infrared light absorption after UV treatment and is good for photoacoustic imaging that can guide subsequent sonodynamic therapy. This work shows that just with a simple oxygen deficiency treatment, strong 1 O2 generation can be provided to a conventional material under US irradiation and, interestingly, this effect can be amplified by using a small inhibitor BSO, and this is clearly demonstrated in cell and mice experiments.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weitao Yang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Bian
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Weiwei Zeng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiao Jin
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chenyu Dai
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuang Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingbo Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
19
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
20
|
Qi Y, Qian K, Chen J, E Y, Shi Y, Li H, Zhao L. A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging. J Nanobiotechnology 2021; 19:414. [PMID: 34895257 PMCID: PMC8665638 DOI: 10.1186/s12951-021-01151-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND As recovery time of diabetic wound injury is prolonged by the production of detrimental factors, including reactive oxygen species (ROS) and inflammatory cytokines, attenuating the oxidative stress and inflammatory reactions in the microenvironment of the diabetic wound site would be significant. EXPERIMENTAL DESIGN In our study, we prepared thermoreversible, antibacterial zeolite-based nanoparticles loaded hydrogel to promote diabetic wound healing via the neutralization of detrimental factors such as inflammatory cytokines and ROS. RESULTS The cerium (Ce)-doped biotype Linde type A (LTA) zeolite nanoparticles synergistically eliminated mitochondrial ROS and neutralized free inflammatory factors, thus remodeling the anti-inflammatory microenvironment of the wound and enhancing angiogenesis. Moreover, the thermoreversible hydrogel composed of Pluronic F127 and chitosan demonstrated strong haemostatic and bactericidal behavior. CONCLUSIONS In conclusion, the obtained thermoreversible, antibacterial, zeolite-based nanoparticles loaded hydrogels represent a multi-targeted combination therapy for diabetic wound healing.
Collapse
Affiliation(s)
- Yao Qi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Kun Qian
- Department of Chemistry, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Jin Chen
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yifeng E
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Hongdan Li
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| |
Collapse
|
21
|
Zhang P, Zhang L, Wang J, Zhu L, Li Z, Chen H, Gao Y. An intelligent hypoxia-relieving chitosan-based nanoplatform for enhanced targeted chemo-sonodynamic combination therapy on lung cancer. Carbohydr Polym 2021; 274:118655. [PMID: 34702474 DOI: 10.1016/j.carbpol.2021.118655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022]
Abstract
The clinical efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)-based targeted molecular therapies (TMT) is inevitably hampered by the development of acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Sonodymanic therapy (SDT) is a promising new cancer treatment approach, but its effects are restricted by tumor hypoxia. Herein, a nanoplatform fabricated by erlotinib-modified chitosan loading sonosensitizer hematoporphyrin (HP) and oxygen-storing agent perfluorooctyl bromide (PFOB), namely CEPH, was developed to deliver HP to erlotinib-sensitive cells. CEPH with ultrasound could alleviate hypoxia inside the three-dimensional multicellular tumor spheroids, suppress NSCLC cell growth under normoxic or hypoxic condition, and enhance TMT/SDT synergistic effects through elevated production of reactive oxygen species, decrease of mitochondrial membrane potential, and down-regulation of the expression of the proteins EGFR, p-EGFR, and HIF-1α. Hence, CEPH could be a potential nanoplatform to improve the efficacy of oxygen-dependent SDT and overcome hypoxia-induced TMT resistance for enhanced synergistic TMT/SDT.
Collapse
Affiliation(s)
- Peixia Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lu Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Hao J, Stavljenić Milašin I, Batu Eken Z, Mravak-Stipetic M, Pavelić K, Ozer F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules 2021; 26:6196. [PMID: 34684777 PMCID: PMC8540241 DOI: 10.3390/molecules26206196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022] Open
Abstract
Zeolites and zeolitic imidazolate frameworks (ZIFs) are widely studied as drug carrying nanoplatforms to enhance the specificity and efficacy of traditional anticancer drugs. At present, there is no other systematic review that assesses the potency of zeolites/ZIFs as anticancer drug carriers. Due to the porous nature and inherent pH-sensitive properties of zeolites/ZIFs, the compounds can entrap and selectively release anticancer drugs into the acidic tumor microenvironment. Therefore, it is valuable to provide a comprehensive overview of available evidence on the topic to identify the benefits of the compound as well as potential gaps in knowledge. The purpose of this study was to evaluate the potential therapeutic applications of zeolites/ZIFs as drug delivery systems delivering doxorubicin (DOX), 5-fluorouracil (5-FU), curcumin, cisplatin, and miR-34a. Following PRISMA guidelines, an exhaustive search of PubMed, Scopus, Embase, and Web of Science was conducted. No language or time limitations were used up to 25th August 2021. Only full text articles were selected that pertained to the usage of zeolites/ZIFs in delivering anticancer drugs. Initially, 1279 studies were identified, of which 572 duplicate records were excluded. After screening for the title, abstract, and full texts, 53 articles remained and were included in the qualitative synthesis. An Inter-Rater Reliability (IRR) test, which included a percent user agreement and reliability percent, was conducted for the 53 articles. The included studies suggest that anticancer drug-incorporated zeolites/ZIFs can be used as alternative treatment options to enhance the efficacy of cancer treatment by mitigating the drawbacks of drugs under conventional treatment.
Collapse
Affiliation(s)
- Jessica Hao
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | | | - Zeynep Batu Eken
- Department of Restorative Dentistry, Yeditepe University, 34728 Istanbul, Turkey;
| | - Marinka Mravak-Stipetic
- Clinical Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Fusun Ozer
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
24
|
Jin F, Liu D, Xu X, Ji J, Du Y. Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death. Int J Nanomedicine 2021; 16:4693-4712. [PMID: 34267518 PMCID: PMC8275223 DOI: 10.2147/ijn.s314506] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Benefiting from the rapid development of nanotechnology, photodynamic therapy (PDT) is arising as a novel non-invasive clinical treatment for specific cancers, which exerts direct efficacy in destroying primary tumors by generating excessive cytotoxic reactive oxygen species (ROS). Notably, PDT-induced cell death is related to T cell-mediated antitumor immune responses through induction of immunogenic cell death (ICD). However, ICD elicited via PDT is not strong enough and is limited by immunosuppressive tumor microenvironment (ITM). Therefore, it is necessary to improve PDT efficacy through enhancing ICD with the combination of synergistic tumor therapies. Herein, the recent progress of nanomaterials-based PDT combined with chemotherapy, photothermal therapy, radiotherapy, and immunotherapy, employing ICD-boosted treatments is reviewed. An outlook about the future application in clinics of nanomaterials-based PDT strategies is also mentioned.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
25
|
Manuel R, Lima MDS, Dilly S, Daunay S, Abbe P, Pramil E, Solier S, Guillaumond F, Tubiana SS, Escargueil A, Pêgas Henriques JA, Ferrand N, Erdelmeier I, Boucher JL, Bertho G, Agranat I, Rocchi S, Sabbah M, Slama Schwok A. Distinction between 2'- and 3'-Phosphate Isomers of a Fluorescent NADPH Analogue Led to Strong Inhibition of Cancer Cells Migration. Antioxidants (Basel) 2021; 10:antiox10050723. [PMID: 34064498 PMCID: PMC8148004 DOI: 10.3390/antiox10050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Specific inhibition of NADPH oxidases (NOX) and NO-synthases (NOS), two enzymes associated with redox stress in tumor cells, has aroused great pharmacological interest. Here, we show how these enzymes distinguish between isomeric 2′- and 3′-phosphate derivatives, a difference used to improve the specificity of inhibition by isolated 2′- and 3′-phosphate isomers of our NADPH analogue NS1. Both isomers become fluorescent upon binding to their target proteins as observed by in vitro assay and in vivo imaging. The 2′-phosphate isomer of NS1 exerted more pronounced effects on NOS and NOX-dependent physiological responses than the 3′-phosphate isomer did. Docking and molecular dynamics simulations explain this specificity at the level of the NADPH site of NOX and NOS, where conserved arginine residues distinguished between the 2′-phosphate over the 3′-phosphate group, in favor of the 2′-phosphate.
Collapse
Affiliation(s)
- Raoul Manuel
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Michelle de Souza Lima
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Sébastien Dilly
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Sylvain Daunay
- Innoverda, Biopark Villejuif, F-94800 Villejuif, France; (S.D.); (I.E.)
| | - Patricia Abbe
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Team 12, F-06204 Nice, France; (P.A.); (S.R.)
| | - Elodie Pramil
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Stéphanie Solier
- Gustave Roussy Cancer Center, INSERM U1170, F-94805 Villejuif, France;
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Aix-Marseille Univ., CNRS, UMR 7258, Institut Paoli-Calmettes, F-13288 Marseille, France; (F.G.); (S.-S.T.)
| | - Sarah-Simha Tubiana
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Aix-Marseille Univ., CNRS, UMR 7258, Institut Paoli-Calmettes, F-13288 Marseille, France; (F.G.); (S.-S.T.)
| | - Alexandre Escargueil
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre 90040-060, Brazil;
- Graduate Program in Biotechnology, Universidade do Vale do Taquari—Univates, Lajeado 95900-000, Brazil
| | - Nathalie Ferrand
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Irène Erdelmeier
- Innoverda, Biopark Villejuif, F-94800 Villejuif, France; (S.D.); (I.E.)
| | - Jean-Luc Boucher
- CNRS UMR 8601, University Paris Descartes, F-75006 Paris, France; (J.-L.B.); (G.B.)
| | - Gildas Bertho
- CNRS UMR 8601, University Paris Descartes, F-75006 Paris, France; (J.-L.B.); (G.B.)
| | - Israel Agranat
- Organic Chemistry, Institute of Chemistry, Philadelphia Bldg #212, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Team 12, F-06204 Nice, France; (P.A.); (S.R.)
| | - Michèle Sabbah
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
| | - Anny Slama Schwok
- Cancer Biology and Therapeutics Team, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Sorbonne Université, F-75012 Paris, France; (R.M.); (M.d.S.L.); (S.D.); (E.P.); (A.E.); (N.F.); (M.S.)
- Correspondence: or
| |
Collapse
|
26
|
Kayani Z, Dehdari Vais R, Soratijahromi E, Mohammadi S, Sattarahmady N. Curcumin-gold-polyethylene glycol nanoparticles as a nanosensitizer for photothermal and sonodynamic therapies: In vitro and animal model studies. Photodiagnosis Photodyn Ther 2020; 33:102139. [PMID: 33310015 DOI: 10.1016/j.pdpdt.2020.102139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Photothermal and ultrasound therapies are novel non-invasive strategies for tumor treatment which are equipped with a photosensitizer and sonosensitizer subsequent activation by laser irradiation and ultrasound exposure. In this study, curcumin-gold-polyethylene glycol nanoparticles (Cur-Au NPs-PEG) were synthesized, and the dual role in photothermal (PTT) and sonodynamic (SDT) therapies of melanoma cancer was evaluated. The toxicity effect of Cur-Au NPs-PEG against a mouse malignant melanoma cell line C540 (B16/F10) was firstly inspected in vitro. Cur-Au NPs-PEG provided a hyperthermal microenvironment and generated reactive oxygen species upon PTT and STD, respectively, with representing synergism effects. Studies in vivo in a tumor-bearing animal also demonstrate the superiority of PTT and SDT in destroying melanoma tumor.
Collapse
Affiliation(s)
- Z Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - E Soratijahromi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Mohammadi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology Technology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Carrier lifetime regulation strategy to improve the sewage purification capacity of superhydrophobic silver phosphate fabric. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Sun D, Zhang Z, Chen M, Zhang Y, Amagat J, Kang S, Zheng Y, Hu B, Chen M. Co-Immobilization of Ce6 Sono/Photosensitizer and Protonated Graphitic Carbon Nitride on PCL/Gelation Fibrous Scaffolds for Combined Sono-Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40728-40739. [PMID: 32794726 DOI: 10.1021/acsami.0c08446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming at developing a moderate and efficient sono-photodynamic therapy for breast cancer, tissue engineering scaffolds may provide an easy and efficient strategy to eliminate serious side effects in conventional surgery or chemotherapy, and thus, they are highly desired. However, the development of ideal sono-photodynamic therapeutic scaffolds is always hindered by the poor stability and incompatibility between the different biomaterial components. Herein, the Food and Drug Administration (FDA)-approved sono/photosensitizer Chlorin e6 (Ce6) was successfully and tightly incorporated into electrospun polycaprolactone/gelatin (PG) scaffolds via positively charged protonated g-C3N4 nanosheets (pCN). The PG fibers were precoated with graphene oxide (GO) to enable the assembly of pCN on the surface through electrostatic interactions. The Ce6@pCN-GO-PG composite scaffolds exhibited good cytocompatibility and excellent sono-photodynamic activity, leading to distinctly boosted reactive oxygen species (ROS) generation and a 95.8% inactivation rate of breast cancer cells through a synergistic sono-photodynamic process triggered by an 808 nm laser and 1 MHz ultrasound (US) excitation, within the clinical therapeutic dose. The as-developed scaffolds with unique ultrasound cavitation therapeutic effects can be used not only for complete eradication of tumor cells after surgery but also as a cell behavior observation platform of sono-photodynamic cancer therapy.
Collapse
Affiliation(s)
- Di Sun
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, P. R. China
| | - Mengya Chen
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China
| | - Yanping Zhang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jordi Amagat
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Shifei Kang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
| | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|