1
|
Liu A, Lee M, Venkatesh R, Bonsu JA, Volkovinsky R, Meredith JC, Reichmanis E, Grover MA. Conjugated Polymer Process Ontology and Experimental Data Repository for Organic Field-Effect Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8816-8826. [PMID: 38027538 PMCID: PMC10653076 DOI: 10.1021/acs.chemmater.3c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Polymer-based semiconductors and organic electronics encapsulate a significant research thrust for informatics-driven materials development. However, device measurements are described by a complex array of design and parameter choices, many of which are sparsely reported. For example, the mobility of a polymer-based organic field-effect transistor (OFET) may vary by several orders of magnitude for a given polymer as a plethora of parameters related to solution processing, interface design/surface treatment, thin-film deposition, postprocessing, and measurement settings have a profound effect on the value of the final measurement. Incomplete contextual, experimental details hamper the availability of reusable data applicable for data-driven optimization, modeling (e.g., machine learning), and analysis of new organic devices. To curate organic device databases that contain reproducible and findable, accessible, interoperable, and reusable (FAIR) experimental data records, data ontologies that fully describe sample provenance and process history are required. However, standards for generating such process ontologies are not widely adopted for experimental materials domains. In this work, we design and implement an object-relational database for storing experimental records of OFETs. A data structure is generated by drawing on an international standard for batch process control (ISA-88) to facilitate the design. We then mobilize these representative data records, curated from the literature and laboratory experiments, to enable data-driven learning of process-structure-property relationships. The work presented herein opens the door for the broader adoption of data management practices and design standards for both the organic electronics and the wider materials community.
Collapse
Affiliation(s)
- Aaron
L. Liu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Myeongyeon Lee
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 East Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Rahul Venkatesh
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Jessica A. Bonsu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Ron Volkovinsky
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J. Carson Meredith
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Elsa Reichmanis
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 East Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Martha A. Grover
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
3
|
The continuous fiber networks with a balanced bimodal orientation of P(NDI2OD-T2) by controlling solution nucleation and face-on and edge-on crystallization rates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Callaway CP, Liu AL, Venkatesh R, Zheng Y, Lee M, Meredith JC, Grover M, Risko C, Reichmanis E. The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for π-Conjugated Polymer Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3613-3620. [PMID: 35037454 DOI: 10.1021/acsami.1c20994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of data analytics techniques and materials informatics provides opportunities to accelerate the discovery and development of organic semiconductors for electronic devices. However, the development of engineering solutions is limited by the ability to control thin-film morphology in an immense parameter space. The combination of high-throughput experimentation (HTE) laboratory techniques and data analytics offers tremendous avenues to traverse the expansive domains of tunable variables offered by organic semiconductor thin films. This Perspective outlines the steps required to incorporate a comprehensive informatics methodology into the experimental development of polymer-based organic semiconductor technologies. The translation of solution processing and property metrics to thin-film behavior is crucial to inform efficient HTE for data collection and application of data-centric tools to construct new process-structure-property relationships. We argue that detailed investigation of the solution state prior to deposition in conjunction with thin-film characterization will yield a deeper understanding of the physicochemical mechanisms influencing performance in π-conjugated polymer electronics, with data-driven approaches offering predictive capabilities previously unattainable via traditional experimental means.
Collapse
Affiliation(s)
- Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Aaron L Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Rahul Venkatesh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yulong Zheng
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Myeongyeon Lee
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - J Carson Meredith
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Martha Grover
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Elsa Reichmanis
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|