1
|
Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105383. [PMID: 35048521 DOI: 10.1002/smll.202105383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Indexed: 06/14/2023]
Abstract
2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.
Collapse
Affiliation(s)
- Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Kaiwen Gong
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yanyong Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Binbin Ding
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lei Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yongkang Xu
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Rong Wang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lianbi Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
2
|
Liu Y, Gu F. A wafer-scale synthesis of monolayer MoS 2 and their field-effect transistors toward practical applications. NANOSCALE ADVANCES 2021; 3:2117-2138. [PMID: 36133770 PMCID: PMC9419721 DOI: 10.1039/d0na01043j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 05/11/2023]
Abstract
Molybdenum disulfide (MoS2) has attracted considerable research interest as a promising candidate for downscaling integrated electronics due to the special two-dimensional structure and unique physicochemical properties. However, it is still challenging to achieve large-area MoS2 monolayers with desired material quality and electrical properties to fulfill the requirement for practical applications. Recently, a variety of investigations have focused on wafer-scale monolayer MoS2 synthesis with high-quality. The 2D MoS2 field-effect transistor (MoS2-FET) array with different configurations utilizes the high-quality MoS2 film as channels and exhibits favorable performance. In this review, we illustrated the latest research advances in wafer-scale monolayer MoS2 synthesis by different methods, including Au-assisted exfoliation, CVD, thin film sulfurization, MOCVD, ALD, VLS method, and the thermolysis of thiosalts. Then, an overview of MoS2-FET developments was provided based on large-area MoS2 film with different device configurations and performances. The different applications of MoS2-FET in logic circuits, basic memory devices, and integrated photodetectors were also summarized. Lastly, we considered the perspective and challenges based on wafer-scale monolayer MoS2 synthesis and MoS2-FET for developing practical applications in next-generation integrated electronics and flexible optoelectronics.
Collapse
Affiliation(s)
- Yuchun Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|