1
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Gong L, Zeng R, Shi Y, Yu M, Yu X, Sun D. Co/P co-doped bamboo-based woodceramics with a sandwich structure modified by carbon nanotube electrodeposition as supercapacitor electrodes. BIORESOURCE TECHNOLOGY 2024; 399:130573. [PMID: 38479626 DOI: 10.1016/j.biortech.2024.130573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/24/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Exploring new electrode structures and co-doped composite biomass material electrodes is considered to be an effective way of developing cheap, efficient carbon-based supercapacitors. A bamboo-based sandwich-structured matrix was prepared from thin bamboo veneer and bamboo fiber by pretreatment with H3PO4 and Co2+-catalyzed graphitization. The pore structure was modulated by hydrothermal activation with NaOH and electrodeposition of carbon nanotubes (CNTs) to obtain CNTs modified, Co/P co-doped sandwich-structured woodceramics electrode (CNT@Co/P). It not only has an obvious sandwich structure, but also retains the natural structural characteristics of bamboo. The specific capacitance of the resulting electrode (CNT@Co/P-20) is as high as 453.72F/g using 1 wt% of carboxylated multi-walled carbon nanotubes (CMWCNT) solution as the deposition electrolyte at a current density of 0.2 A/g for 20 min at room temperature. When the power density is 500 W/kg, the energy density reaches 21.3Wh /kg, showing a good electrochemical performance.
Collapse
Affiliation(s)
- Le Gong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hengyang Normal University, Hengyang 421010, China
| | - Rongxiang Zeng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqing Shi
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Minggong Yu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianchun Yu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Delin Sun
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Du X, Lin Z, Wang X, Zhang K, Hu H, Dai S. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules 2023; 28:6432. [PMID: 37687261 PMCID: PMC10563087 DOI: 10.3390/molecules28176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Currently, energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness. This review first addresses the recent developments in state-of-the-art electrode materials, the structural design of electrodes, and the optimization of electrode performance. Then we summarize the possible classification of hybrid supercapacitor devices, and their potential applications. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing trends are discussed. This review is intended to provide future research directions for the next generation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Xiaobing Du
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuanglong Lin
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxia Wang
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Kaiyou Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hao Hu
- School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuge Dai
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Lu Z, Liu X, Wang T, Huang X, Dou J, Wu D, Yu J, Wu S, Chen X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range. J Colloid Interface Sci 2023; 638:709-718. [PMID: 36780851 DOI: 10.1016/j.jcis.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Among many supercapacitor electrode materials, carbon materials are widely used due to their large specific surface area, good electrical conductivity and high economic efficiency. However, carbon-based supercapacitors face the challenges of low energy density and limited operating environment. This work reports a facile self-assembled method to prepare three-dimensional carbon nanotubes/reduced graphene oxide (CNTs/rGO) aerogel material, which was applied as both positive and negative electrodes in a symmetric superacapacitor. The fabricated supercapacitor exhibited prominent capacitive performance not only at room temperature, but also at extreme temperatures (-20 ∼ 80 °C). The specific capacitances of the symmetric supercapacitors based on CNTs/rGO at a weight ratio of 2:5 respectively reached 107.8 and 128.2 F g-1 at 25 °C and 80 °C with KOH as the electrolyte, and 80.0 and 144.6 F g-1 at -20 °C and 60 °C with deep eutectic solvent as the electrolyte. Notably, the capacitance retention and coulombic efficiency of the assembled supercapacitors remained almost unchanged after 20,000 cycles of charge/discharge test over a wide temperature range. The work uncovered a possibility for the development of high-performance supercapacitors flexibly operated at extreme temperatures.
Collapse
Affiliation(s)
- Zhenjie Lu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Xuanli Liu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, 830046 Urumqi, Xinjiang, China
| | - Xinning Huang
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China
| | - Jinxiao Dou
- Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China.
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, 830046 Urumqi, Xinjiang, China.
| | - Jianglong Yu
- Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Shiyong Wu
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 200237 Shanghai, China
| | - Xingxing Chen
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China.
| |
Collapse
|
5
|
Ren X, Sun M, Gan Z, Li Z, Cao B, Shen W, Fu Y. Hierarchically nanostructured Zn 0.76C 0.24S@Co(OH) 2 for high-performance hybrid supercapacitor. J Colloid Interface Sci 2022; 618:88-97. [PMID: 35334365 DOI: 10.1016/j.jcis.2022.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
It is a great challenge to achieve both high specific capacity and high energy density of supercapacitors by designing and constructing hybrid electrode materials through a simple but effective process. In this paper, we proposed a hierarchically nanostructured hybrid material combining Zn0.76Co0.24S (ZCS) nanoparticles and Co(OH)2 (CH) nanosheets using a two-step hydrothermal synthesis strategy. Synergistic effects between ZCS nanoparticles and CH nanosheets result in efficient ion transports during the charge-discharge process, thus achieving a good electrochemical performance of the supercapacitor. The synthesized ZCS@CH hybrid exhibits a high specific capacity of 1152.0 C g-1 at a current density of 0.5 A g-1 in 2 M KOH electrolyte. Its capacity retention rate is maintained at ∼ 70.0% when the current density is changed from 1 A g-1 to 10 A g-1. A hybrid supercapacitor (HSC) assembled from ZCS@CH as the cathode and active carbon (AC) as the anode displays a capacitance of 155.7 F g-1 at 0.5 A g-1, with a remarkable cycling stability of 91.3% after 12,000cycles. Meanwhile, this HSC shows a high energy density of 62.5 Wh kg-1 at a power density of 425.0 W kg-1, proving that the developed ZCS@CH is a promising electrode material for energy storage applications.
Collapse
Affiliation(s)
- Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China.
| | - Baobao Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
6
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Liang Z, Tian W, Liu Y, Du Y, Zhang W, Lin L, Chen M, Cao D. Preparation of Co
3
O
4
Electrodes with Different Morphologies for the Investigation of Magnetic Response in Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhiwei Liang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wensheng Tian
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuan Liu
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wenxin Zhang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Lihua Lin
- Department of Physics Fuzhou University Fuzhou 350002 P.R.China
| | - Mingming Chen
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Dawei Cao
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| |
Collapse
|
8
|
Dixit F, Zimmermann K, Dutta R, Prakash NJ, Barbeau B, Mohseni M, Kandasubramanian B. Application of MXenes for water treatment and energy-efficient desalination: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127050. [PMID: 34534806 DOI: 10.1016/j.jhazmat.2021.127050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
MXenes are a new type of two-dimensional (2D) material which are rapidly gaining traction for a range of environmental, chemical and medical applications. MXenes and MXene-composites exhibit high surface area, superlative chemical stability, thermal conductivity, hydrophilicity and are environmentally compatible. Consequently, MXenes have been successfully employed for hydrogen storage, semiconductor manufacture and lithium ion batteries. In recent years, MXenes have been utilized in numerous environmental applications for treating contaminated surface waters, ground and industrial/ municipal wastewaters and for desalination, often outperforming conventional materials in each field. MXene-composites can adsorb multiple organic and inorganic contaminants, and undergo Faradaic capacitive deionization (CDI) when utilized for electrochemical applications. This approach allows for a significant decrease in the energy demand by overcoming the concentration polarization limitation of conventional CDI electrodes, offering a solution for low-energy desalination of brackish waters. This article presents a state-of-the-art review on water treatment and desalination applications of MXenes and MXene-composites. An investigation into the kinetics and isotherms is presented, as well as the impact of water constituents and operating conditions are also discussed. The applications of MXenes for CDI, pervaporation desalination and solar thermal desalination are also examined based on the reviewed literature. The effects of the water composition and operational protocols on the regeneration efficacy and long-term usage are also highlighted.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Rahul Dutta
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Niranjana Jaya Prakash
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Quebec, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India.
| |
Collapse
|
9
|
Liu L, Yu X, Zhang W, Lv Q, Hou L, Fautrelle Y, Ren Z, Cao G, Lu X, Li X. Strong Magnetic-Field-Engineered Porous Template for Fabricating Hierarchical Porous Ni-Co-Zn-P Nanoplate Arrays as Battery-Type Electrodes of Advanced All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2782-2793. [PMID: 34995443 DOI: 10.1021/acsami.1c19997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sluggish charge transport kinetics that exist in the energy storage process of all-solid-state supercapacitors (ASSSCs) can be improved by designing open hierarchical porous structures for binder-free electrodes. Herein, a template-directed strategy is developed to fabricate open hierarchical porous Ni-Co-Zn-P nanoplate arrays (NCZP6T) through phosphating the electrodeposited NiCo-LDH nanosheets loaded on a template. At first, porous conductive NiZn alloy nanoplate arrays are rationally devised as the template by a strong magnetic field (SMF)-assisted electrodeposition. The Lorentz force caused by coupling the SMF with the electrical current induces a magnetohydrodynamic (MHD) flow (including the micro-MHD flow), which homogenizes the deposition coating, tunes the nucleation and growth of the NiZn alloy, and produces pores in the nanoplates. The open hierarchical porous structure offers a larger specific surface area and pore volume for accelerating charge transport and gives a synergistic effect between the inner porous conductive NiZn array template and the outer electrochemical active phosphides for high-performance hybrid ASSSCs. Accordingly, the battery-type electrode of NCZP6T shows a much higher specific capacitance of 3.81 F cm-2 at 1 mA cm-2, enhanced rate capability, and remarkable cycling stability at progressively varying current densities. Finally, the NCZP6T//FeS ASSSC delivers a high energy density of 77 μW h cm-2 at a large power density of 12 mW cm-2, outperforming most state-of-the-art supercapacitors.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Xing Yu
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Weiwei Zhang
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Qingyun Lv
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Long Hou
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Yves Fautrelle
- SIMAP-EPM-Madylam/G-INP/CNRS, ENSHMG, St Martin d'Heres Cedex BP 38402, France
| | - Zhongming Ren
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Guanghui Cao
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
| | - Xi Li
- State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
- Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- SIMAP-EPM-Madylam/G-INP/CNRS, ENSHMG, St Martin d'Heres Cedex BP 38402, France
| |
Collapse
|
10
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|
11
|
Li Y, Deng Y, Zhang X, Ying G, Wang Z, Zhang J. Facile fabrication of novel Ti3C2T -supported fallen leaf-like Bi2S3 nanopieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|