1
|
Sun HY, Yu ZY, Zhou AP, Wei SL, Chang Q, Zhang T, Sun YP. Theoretical insights on the luminescent mechanism of a highly efficient green-activated delayed fluorescence emitter using the QM/MM method. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2156404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hai-Yang Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Zi-Yue Yu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Ai-Ping Zhou
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Shu-Li Wei
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Qiang Chang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| | - Yu-Ping Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, People’s Republic of China
| |
Collapse
|
2
|
Miyabe H, Ujita M, Nishio M, Nakae T, Usuki T, Ikeya M, Nishimoto C, Ito S, Hattori M, Takeya S, Hayashi S, Saito D, Kato M, Nishihara H, Yamada T, Yamanoi Y. A Series of D-A-D Structured Disilane-Bridged Triads: Structure and Stimuli-Responsive Luminescence Studies. J Org Chem 2022; 87:8928-8938. [PMID: 35785998 DOI: 10.1021/acs.joc.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of σ-π extended octamethyltetrasilanes, which have phenothiazine, 9,9-dimethyl-9,10-dihydroacridine, or phenoxazine (1, 2, and 3) groups as donor moieties and thienopyrazine or benzothiadiazole (a and b) groups as acceptor fragments, has been prepared, and their optical properties have been studied as an extension of our work. All six compounds exhibited fluorescence in the solid state with maximum wavelengths centered in the range of 400 and 650 nm upon excitation by a UV lamp. Compound 2b showed apparent dual emission behavior in solution, which depends on solvent polarity, and a reversible photoluminescent change under mechanical and thermal stimuli in the solid state. Quantum chemical calculations suggest the contribution of a quasi-axial conformer of the 9,9-dimethyl-9,10-dihydroacridine moiety in 2b to the dual emission in solution and the mechanofluoroluminescence in the solid state, similarly to 1a. These studies provide new insight into the preparation of disilane-bridged triads capable of responding to multiple stimuli.
Collapse
Affiliation(s)
- Hiroto Miyabe
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mizuha Ujita
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Nishio
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tsukasa Usuki
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minako Ikeya
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Chika Nishimoto
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Mineyuki Hattori
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shigenobu Hayashi
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1330, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Teppei Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang CK, Fan J. Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. J Phys Chem A 2021; 125:175-186. [PMID: 33373223 DOI: 10.1021/acs.jpca.0c08994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of efficient sky-blue thermally activated delayed fluorescence (TADF) emitters is highly desired. However, the types and amounts of sky-blue TADF are far from meeting the requirements, and effective molecular design strategies are expected. Herein, the photophysical properties and excited-state dynamics of 12 molecules are theoretically studied based on the thermal vibration correlation function method. Distributions of holes and electrons are analyzed by the heat maps. The frontier molecular orbital distribution, adiabatic singlet-triplet energy gap, and reorganization energy are analyzed in detail. Furthermore, the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are studied, and the up-conversion process is illustrated. Our results indicate that different substitution positions and numbers play an important role in the luminescence properties of TADF molecules. The meta-position substitutions restrict the geometry variations, hinder the non-radiative energy consumption process, and promote the radiative process of TADF molecules. Meanwhile, molecules with ortho-position substitutions possess the smallest energy gaps (ΔEst) and the largest RISC rates. Moreover, molecules with the substitutions of one tBCz group and two PO groups have the smallest ΔEst and the largest spin orbital coupling. Thus, a wise molecular design strategy, namely, ortho-position substitutions as well as substitutions with one tBCz group and two PO groups, is proposed to facilitate the RISC process. Based on this rule, new efficient TADF molecules are theoretically designed and proposed. Our work reasonably elucidates the experimental measurements, and the effects of different substitution numbers and positions of secondary acceptors on TADF properties are highlighted, which could provide a theoretical perspective for designing efficient sky-blue TADF molecules.
Collapse
Affiliation(s)
- Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|