1
|
Liu D, Duan W, He Z, Du L, Zhu Y, Jin Z, Sun H, Hou X, Liu P, Zhou L. Study on the biosafety and in vivo metabolic patterns of DNA-inspired Janus Base nanotubes. Int J Biol Macromol 2025; 313:144010. [PMID: 40354855 DOI: 10.1016/j.ijbiomac.2025.144010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Janus base nanotubes (JBNTs), also known as Rosette nanotubes, are synthesized from DNA-inspired base molecular monomers and show promise for biomedical applications. However, their clinical translation has been hindered by a lack of comprehensive biocompatibility and biodistribution studies. In this study, we evaluated the in vitro and in vivo biocompatibility of JBNTs and their biodistribution following intravenous and knee intra-articular injections. Within the concentration range of 40 μg/mL, JBNTs supported excellent cell growth with no significant inflammatory response, and even at a concentration of 100 μg/mL, no noticeable erythrocyte hemolysis was observed. In vivo biocompatibility assessment revealed that intravenous injection of 30 μg and 150 μg of JBNTs did not result in significant abnormalities in routine blood tests, inflammatory responses, or organ damage within 7 days. JBNTs were primarily metabolized by the liver and kidneys, with excretion occurring via urine and feces. Notably, we observed that JBNTs extended the retention time of macromolecular substances within the knee joint cavity. While Cy7 alone remained in the joint for approximately 3 days, JBNTs-Cy7 persisted for more than 21 days. This study underscores the safety, efficacy, and transformative potential of JBNTs for clinical applications in targeted drug delivery and tissue regeneration.
Collapse
Affiliation(s)
- Dehua Liu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wu Duan
- Dpartment of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Zongyue He
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Longzhuo Du
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanlong Zhu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zuowei Jin
- Department of Pathology, Zhangqiu District Hospital of traditional Chinese Medicine, Jinan, Shandong 250012, China
| | - Houyi Sun
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinguo Hou
- Dpartment of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peilai Liu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Xiao L, Wang Y, Cai J, Hu J, Dou H, Zhu Y, Geng B, Pan D, Shen L. MXene and Near-Infrared Carbon Dots Co-Encapsulated Hydrogel Facilitates Infected Bone Defect Reconstruction. Adv Healthc Mater 2025; 14:e2500248. [PMID: 40171730 DOI: 10.1002/adhm.202500248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Inadequate bone differentiation and intractable biofilm formation due to stubborn bacterial infection complicate infected bone defect repair. Adding harmful antibiotics into scaffolds not only promotes multidrug-resistant bacteria but also decreases bone repair effect. Furthermore, dynamic monitor of scaffolds' degradation is crucial for achieving visualized bone defect repair, however, currently reported biomaterials do not have imaging tracing capabilities. On this basis, this work develops a scaffold material with triple functionality for visualized therapy of infected bone defects: antibacterial, osteogenesis, and near-infrared (NIR) imaging capabilities. Single-layer Ti3C2Tx with broad-spectrumantibacterial activity and negatively charged carbon dots (CDs) with osteogenic activity are synthesized for infected bone defect repair. To validate antibacterial and osteogenic activities in vivo, 3D injectable hydrogels encapsulated with Ti3C2Tx and CDs (CD/Ti3C2Tx/GelMA) are constructed. NIR imaging is used to monitor the degradation process of CD/Ti3C2Tx/GelMA hydrogels in infected bone defect models, which indicated that CDs are completely released from hydrogels in about 30 days. Owing to the continuous release of Ti3C2Tx and CDs, the obtained CD/Ti3C2Tx/GelMA hydrogels can efficiently promote the repair of infected bone defects within 60 days. These findings develop a new biomaterial with great performance for visualized antibacterial and osteogenic therapy of infected bone defects.
Collapse
Affiliation(s)
- Longfei Xiao
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, P. R. China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongjing Dou
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, P. R. China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
3
|
Hemraz UD, Yamazaki T, El-Bakkari M, Cho JY, Fenniri H. Self-assembled rosette nanotubes from tetra guanine-cytosine modules. NANOSCALE ADVANCES 2024; 7:281-287. [PMID: 39610793 PMCID: PMC11600576 DOI: 10.1039/d4na00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
Self-assembly of small molecules into supramolecular architectures is a sustainable alternative to new advanced material design. Herein, the design and synthesis of a self-assembling system containing four covalently linked hybrid guanine and cytosine (G∧C) units that were connected through bifunctional amines are reported. These tetra G∧C motifs were characterized and self-assembled in water and methanol to produce discrete nanostructures. Each module has 24 sites for intermolecular hydrogen bonding and it is proposed that in solution the four G∧C units per molecule align into a linear stack which in turn self-assembles into a hexameric super-helix held together by 72 intermolecular hydrogen bonds. Stacking of these nano-helices led to the formation of quad rosette nanotubes.
Collapse
Affiliation(s)
- Usha D Hemraz
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
- Nanotechnology Research Centre, National Research Council of Canada 11421 Saskatchewan Drive Edmonton Alberta T6G 2M9 Canada
- Human Health Therapeutics, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Takeshi Yamazaki
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
- Nanotechnology Research Centre, National Research Council of Canada 11421 Saskatchewan Drive Edmonton Alberta T6G 2M9 Canada
| | - Mounir El-Bakkari
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
- Nanotechnology Research Centre, National Research Council of Canada 11421 Saskatchewan Drive Edmonton Alberta T6G 2M9 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council of Canada 11421 Saskatchewan Drive Edmonton Alberta T6G 2M9 Canada
| | - Hicham Fenniri
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
- Nanotechnology Research Centre, National Research Council of Canada 11421 Saskatchewan Drive Edmonton Alberta T6G 2M9 Canada
- University Mohammed VI Polytechnic Lot 660, Hay Moulay Rachid 43150 Benguerir Morocco
| |
Collapse
|
4
|
Jiao R, Lin X, Wang J, Zhu C, Hu J, Gao H, Zhang K. 3D-printed constructs deliver bioactive cargos to expedite cartilage regeneration. J Pharm Anal 2024; 14:100925. [PMID: 39811488 PMCID: PMC11730853 DOI: 10.1016/j.jpha.2023.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2025] Open
Abstract
Cartilage is solid connective tissue that recovers slowly from injury, and pain and dysfunction from cartilage damage affect many people. The treatment of cartilage injury is clinically challenging and there is no optimal solution, which is a hot research topic at present. With the rapid development of 3D printing technology in recent years, 3D bioprinting can better mimic the complex microstructure of cartilage tissue and thus enabling the anatomy and functional regeneration of damaged cartilage. This article reviews the methods of 3D printing used to mimic cartilage structures, the selection of cells and biological factors, and the development of bioinks and advances in scaffold structures, with an emphasis on how 3D printing structure provides bioactive cargos in each stage to enhance the effect. Finally, clinical applications and future development of simulated cartilage printing are introduced, which are expected to provide new insights into this field and guide other researchers who are engaged in cartilage repair.
Collapse
Affiliation(s)
- Rong Jiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingchao Wang
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chunyan Zhu
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiang Hu
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Kun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
5
|
Xiao Y, Yang S, Sun Y, Sah RL, Wang J, Han C. Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature. Int J Nanomedicine 2024; 19:12743-12768. [PMID: 39634196 PMCID: PMC11615010 DOI: 10.2147/ijn.s492020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Nanoscale morphologies on the surface of substrates/scaffolds have gained considerable attention in cartilage tissue engineering for their potential to improve chondrogenic differentiation and cartilage regeneration outcomes by mimicking the topographical and biophysical properties of the extracellular matrix (ECM). To evaluate the influence of nanoscale surface morphologies on chondrogenic differentiation of stem cells and discuss available strategies, we systematically searched evidence according to the PRISMA guidelines on PubMed, Embase, Web of Science, and Cochrane (until April 2024) and registered on the OSF (osf.io/3kvdb). The inclusion criteria were (in vitro) studies reporting the chondrogenic differentiation outcomes of nanoscale morphologies on the surface of substrates/scaffolds. The risk of bias (RoB) was assessed using the JBI-adapted quasi-experimental study assessment tool. Out of 1530 retrieved articles, 14 studies met the inclusion criteria. The evidence suggests that nanoholes, nanogrills, nanoparticles with a diameter of 10-40nm, nanotubes with a diameter of 70-100nm, nanopillars with a height of 127-330nm, and hexagonal nanostructures with a periodicity of 302-733nm on the surface of substrates/scaffolds result in better cell adhesion, growth, and chondrogenic differentiation of stem cells compared to the smooth/unpatterned ones through increasing integrin expression. Large nanoparticles with 300-1200nm diameter promote pre-chondrogenic cellular aggregation. The synergistic effects of the surface nanoscale topography and other environmental physical characteristics, such as matrix stiffness, also play important in the chondrogenic differentiation of stem cells. The RoB was low in 86% (12/14) of studies and high in 14% (2/14). Our study demonstrates that nanomorphologies with specific controlled properties engineered on the surface of substrates/scaffolds enhance stem cells' chondrogenic differentiation, which may benefit cartilage regeneration. However, given the variability in experimental designs and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Yi Xiao
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Department of Head and Neck, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California–San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Chunshan Han
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
6
|
Fiorelli E, Scioli MG, Terriaca S, Ul Haq A, Storti G, Madaghiele M, Palumbo V, Pashaj E, De Matteis F, Ribuffo D, Cervelli V, Orlandi A. Comparison of Bioengineered Scaffolds for the Induction of Osteochondrogenic Differentiation of Human Adipose-Derived Stem Cells. Bioengineering (Basel) 2024; 11:920. [PMID: 39329662 PMCID: PMC11429422 DOI: 10.3390/bioengineering11090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Osteochondral lesions may be due to trauma or congenital conditions. In both cases, therapy is limited because of the difficulty of tissue repair. Tissue engineering is a promising approach that relies on designed scaffolds with variable mechanical attributes to favor cell attachment and differentiation. Human adipose-derived stem cells (hASCs) are a very promising cell source in regenerative medicine with osteochondrogenic potential. Based on the assumption that stiffness influences cell commitment, we investigated three different scaffolds: a semisynthetic animal-derived GelMA hydrogel, a combined scaffold made of rigid PEGDA coated with a thin GelMA layer and a decellularized plant-based scaffold. We investigated the role of different biomechanical stimulations in the scaffold-induced osteochondral differentiation of hASCs. We demonstrated that all scaffolds support cell viability and spontaneous osteochondral differentiation without any exogenous factors. In particular, we observed mainly osteogenic commitment in higher stiffness microenvironments, as in the plant-based one, whereas in a dense and softer matrix, such as in GelMA hydrogel or GelMA-coated-PEGDA scaffold, chondrogenesis prevailed. We can induce a specific cell commitment by combining hASCs and scaffolds with particular mechanical attributes. However, in vivo studies are needed to fully elucidate the regenerative process and to eventually suggest it as a potential approach for regenerative medicine.
Collapse
Affiliation(s)
- Elena Fiorelli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Arsalan Ul Haq
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gabriele Storti
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Marta Madaghiele
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Ermal Pashaj
- Department of Surgical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania;
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Ribuffo
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Valerio Cervelli
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania
| |
Collapse
|
7
|
Zhang M, Fan X, Dong L, Jiang C, Weeger O, Zhou K, Wang D. Voxel Design of Grayscale DLP 3D-Printed Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309932. [PMID: 38769665 PMCID: PMC11267290 DOI: 10.1002/advs.202309932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 05/22/2024]
Abstract
Grayscale digital light processing (DLP) printing is a simple yet effective way to realize the variation of material properties by tuning the grayscale value. However, there is a lack of available design methods for grayscale DLP 3D-printed structures due to the complexities arising from the voxel-level grayscale distribution, nonlinear material properties, and intricate structures. Inspired by the dexterous motions of natural organisms, a design and fabrication framework for grayscale DLP-printed soft robots is developed by combining a grayscale-dependent hyperelastic constitutive model and a voxel-based finite-element model. The constitutive model establishes the relationship between the projected grayscale value and the nonlinear mechanical properties, while the voxel-based finite-element model enables fast and efficient calculation of the mechanical performances with arbitrarily distributed material properties. A multiphysics modeling and experimental method is developed to validate the homogenization assumption of the degree of conversion (DoC) variation in a single voxel. The design framework is used to design structures with reduced stress concentration and programmable multimodal motions. This work paves the way for integrated design and fabrication of functional structures using grayscale DLP 3D printing.
Collapse
Affiliation(s)
- Mengjie Zhang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Xiru Fan
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Le Dong
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Chengru Jiang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Oliver Weeger
- Cyber‐Physical Simulation Group & Additive Manufacturing CenterDepartment of Mechanical EngineeringTechnical University of DarmstadtDolivostr. 15, Darmstadt64293HessenGermany
| | - Kun Zhou
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
8
|
Ajisafe VA, Raichur AM. Snail Mucus-Enhanced Adhesion of Human Chondrocytes on 3D Porous Agarose Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11324-11335. [PMID: 38406881 DOI: 10.1021/acsami.3c19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This study reports the preparation of a novel porous 3D scaffold from agarose-snail mucus (AGSMu) for cartilage tissue repair applications. AG is reported for its unique thermal and mechanical properties, biocompatibility, and biodegradability, making it suitable for biomedical applications. Still, it lacks the cell adhesion properties required for tissue engineering applications. SMu is a complex substance identified to contain glycosaminoglycans (GAGs) and other bioactive molecules that promote wound healing and reduce cartilage deterioration and inflammation. Hence, porous 3D blend scaffolds containing AG and SMu were prepared by the freeze-drying method, characterized, and investigated for bioactive effects on human chondrocyte (C28/I2) cells. The scaffolds had a microporous structure with an average pore size of 245 μm. FTIR spectroscopy showed that SMu was successfully incorporated into the scaffolds. The SMu increased the mechanical strength of the composite scaffolds by more than 80% compared to the pristine AG scaffold. The scaffolds were found to be biocompatible with tunable degradation. The human chondrocyte cells attached and proliferated well on the 3D scaffolds in a few days, demonstrating a marked improvement in adhesion due to the presence of SMu. Enhanced cell adhesion and mechanical properties of 3D porous AG scaffolds could make them suitable for articular cartilage repair and regeneration.
Collapse
Affiliation(s)
- Victor A Ajisafe
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
9
|
Zhang X, Cheng F, Islam MR, Li H. The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review. Int J Biol Macromol 2024; 257:128504. [PMID: 38040155 DOI: 10.1016/j.ijbiomac.2023.128504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The repair and regeneration of the injured tissues or organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology as a class of promising techniques in biomedical research for the development of tissue engineering and regenerative medicine. Chitosan-based bioinks, as the natural biomaterials, are considered as ideal materials for 3D bioprinting to design and fabricate the various scaffold due to their unique dynamic reversibility and fantastic biological properties. Our review aims to provide an overview of chitosan-based bioinks for in vitro tissue repair and regeneration, starting from modification of chitosan that affect these bioprinting processes. In addition, we summarize the advances in chitosan-based bioinks used in the various 3D printing strategies. Moreover, the biomedical applications of chitosan-based bioinks are discussed, primarily centered on regenerative medicine and tissue modeling engineering. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based bioinks and 3D bioprinting will hold promise for developing novel biomedical scaffolds for tissue or organ repair and regeneration.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Md Rashidul Islam
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China.
| |
Collapse
|
10
|
Cui H, Yu ZX, Huang Y, Hann SY, Esworthy T, Shen YL, Zhang LG. 3D printing of thick myocardial tissue constructs with anisotropic myofibers and perfusable vascular channels. BIOMATERIALS ADVANCES 2023; 153:213579. [PMID: 37566935 DOI: 10.1016/j.bioadv.2023.213579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America; Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Medicine, The George Washington University, Washington, DC 20052, United States of America.
| |
Collapse
|
11
|
Cao S, Wei Y, Bo R, Yun X, Xu S, Guan Y, Zhao J, Lan Y, Zhang B, Xiong Y, Jin T, Lai Y, Chang J, Zhao Q, Wei M, Shao Y, Quan Q, Zhang Y. Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration. SCIENCE ADVANCES 2023; 9:eadi8606. [PMID: 37756408 PMCID: PMC10530085 DOI: 10.1126/sciadv.adi8606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Graft-host mechanical mismatch has been a longstanding issue in clinical applications of synthetic scaffolds for soft tissue regeneration. Although numerous efforts have been devoted to resolve this grand challenge, the regenerative performance of existing synthetic scaffolds remains limited by slow tissue growth (comparing to autograft) and mechanical failures. We demonstrate a class of rationally designed flexible network scaffolds that can precisely replicate nonlinear mechanical responses of soft tissues and enhance tissue regeneration via reduced graft-host mechanical mismatch. Such flexible network scaffold includes a tubular network frame containing inversely engineered curved microstructures to produce desired mechanical properties, with an electrospun ultrathin film wrapped around the network to offer a proper microenvironment for cell growth. Using rat models with sciatic nerve defects or Achilles tendon injuries, our network scaffolds show regenerative performances evidently superior to that of clinically approved electrospun conduit scaffolds and achieve similar outcomes to autologous nerve transplantation in prevention of target organ atrophy and recovery of static sciatic index.
Collapse
Affiliation(s)
- Shunze Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Xing Yun
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Shiwei Xu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yanjun Guan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Jianzhong Zhao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Bin Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Yingjie Xiong
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Tianqi Jin
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yuchen Lai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Chang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qing Zhao
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Min Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Yue Shao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qi Quan
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
12
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
13
|
Tian Y, Hu M, Liu X, Wang X, Lu D, Li Z, Liu Y, Zhang P, Zhou Y. ZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion. Int J Mol Sci 2023; 24:ijms24119766. [PMID: 37298717 DOI: 10.3390/ijms24119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+SCA-1+CD45-TER119-) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2. The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application.
Collapse
Affiliation(s)
- Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
14
|
Cheng B, Li C, Zhang B, Liu J, Lu Z, Zhang P, Wei H, Yu Y. Customizable Low-Friction Tough Hydrogels for Potential Cartilage Tissue Engineering by a Rapid Orthogonal Photoreactive 3D-Printing Design. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36893430 DOI: 10.1021/acsami.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels have demonstrated wide applications in tissue engineering, but it is still challenging to develop strong, customizable, low-friction artificial scaffolds. Here, we report a rapid orthogonal photoreactive 3D-printing (ROP3P) strategy to achieve the design of high-performance hydrogels in tens of minutes. The orthogonal ruthenium chemistry enables the formation of multinetworks in hydrogels via phenol-coupling reaction and traditional radical polymerization. Further Ca2+-cross-linking treatment greatly improves their mechanical properties (6.4 MPa at a critical strain of 300%) and toughness (10.85 MJ m-3). The tribological investigation reveals that the high elastic moduli of the as-prepared hydrogels improve their lubrication (∼0.02) and wear-resistance performances. These hydrogels are biocompatible and nontoxic and promote bone marrow mesenchymal stem cell adhesion and propagation. The introduction of 1-hydroxy-3-(acryloylamino)-1,1-propanediylbisphosphonic acid units can greatly enhance their antibacterial property to kill typical Escherichia coli and Staphylococcus aureus. Moreover, the rapid ROP3P can achieve hydrogel preparation in several seconds and is readily compatible with making artificial meniscus scaffolds. The printed meniscus-like materials are mechanically stable and can maintain their shape under long-term gliding tests. It is anticipated that these high-performance customizable low-friction tough hydrogels and the highly efficient ROP3P strategy could promote further development and practical applications of hydrogels in biomimetic tissue engineering, materials chemistry, bioelectronics, and so on.
Collapse
Affiliation(s)
- Bo Cheng
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China
| | - Chengpeng Li
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610017, China
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
15
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
16
|
Pattnaik A, Sanket AS, Pradhan S, Sahoo R, Das S, Pany S, Douglas TEL, Dandela R, Liu Q, Rajadas J, Pati S, De Smedt SC, Braeckmans K, Samal SK. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials 2023; 296:122078. [PMID: 36921442 DOI: 10.1016/j.biomaterials.2023.122078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.
Collapse
Affiliation(s)
- Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - A Swaroop Sanket
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pradhan
- Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | - Rajashree Sahoo
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sudiptee Das
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Swarnaprbha Pany
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Lancaster, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha, India
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA
| | - Jaykumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francusco (UCSF) School of Parmacy, California, USA
| | - Sanghamitra Pati
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
17
|
Sang S, Mao X, Cao Y, Liu Z, Shen Z, Li M, Jia W, Guo Z, Wang Z, Xiang C, Sun L. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8895-8913. [PMID: 36779653 DOI: 10.1021/acsami.2c19058] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong stimulation of transforming growth factor-beta 1 (TGF-β1) enhanced the aggregation, proliferation, and differentiation of SMSCs, thereby enhancing chondrogenic ECM deposition. In vivo animal experiments and gait analysis further confirmed that the ECM scaffold combined with TGF-β1 could effectively promote cartilage regeneration and functional recovery of injured joints. To sum up, the photo-cross-linked ECM bioink for 3D printing of functional cartilage tissue may become an attractive strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanyan Cao
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Zijian Guo
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zehua Wang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chuan Xiang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
18
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
19
|
Lu T, Xia B, Chen G. Advances in polymer-based cell encapsulation and its applications in tissue repair. Biotechnol Prog 2023; 39:e3325. [PMID: 36651921 DOI: 10.1002/btpr.3325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Collapse
Affiliation(s)
- Tangfang Lu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|
20
|
Ma J, Zhao S, Li Y, Hu J, Zhang L, Zhou X, Yan L. Stereoscopic projection lithography based 3D printing with high precision for advanced tissue engineering application. Front Bioeng Biotechnol 2022; 10:1074157. [DOI: 10.3389/fbioe.2022.1074157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence of tissue engineering technology provides an option for the treatment of early organ and tissue lesions by combination of biomimetic scaffolds and stem cells. Stereoscopic projection lithography is utilized broadly in varied application areas due to its high-precision, resolution, and efficiency features. It can be used to fabricate and manufacture complex scaffolds with hierarchical construct, which are highly suitable for advanced tissue engineering application. In current work, gelatin methacrylate (GelMA) was synthesized and fabricated to bioactive scaffold because of its excellent biocompatibility and biodegradability by using stereoscopic projection lithography based 3D printer (YC-M3D-10). The scaffold displayed multilayered micro structures that supported stem cell growth and promoted cell proliferation. The results demonstrated that the cells proliferated significantly on the printed GelMA scaffold after 6 days. Moreover, GelMA scaffolds can promote cell proliferation and show great prospects in future tissue engineering applications.
Collapse
|
21
|
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W, Qiu Y. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model. ACS Biomater Sci Eng 2022; 8:4474-4485. [PMID: 36074133 DOI: 10.1021/acsbiomaterials.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage defects caused by mechanical tear and wear are challenging clinical problems. Articular cartilage has unique load-bearing properties and limited self-repair ability. The current treatment methods, such as microfractures and autogenous cartilage transplantation to repair full-thickness cartilage defects, have apparent limitations. Tissue engineering technology has the potential to repair cartilage defects and directs current research development. To enhance the regenerative capacities of cartilage in weight-bearing areas, we attempted to develop a biomimetic scaffold loaded with a chondroprotective factor that can recreate structure, restore mechanical properties, and facilitate anabolic metabolism in larger joint defects. For enhanced spatial control over both bone and cartilage layers, it is envisioned that biomaterials that meet the needs of both tissue components are required for successful osteochondral repair. We used gelatin methacrylate (GELMA) and polyethylene glycol diacrylate (PEGDA) light-cured dual-network cross-linking modes that can significantly increase the mechanical properties of scaffolds and are capable of restoring function and prolonging the degradation time. Once the hydrogel complex was injected into the osteochondral defect, in situ UV light curing was applied to seamlessly connect the defect repair tissue with the surrounding normal cartilage tissue. The small molecule active substance kartogenin (KGN) can promote cartilage repair. We encapsulated KGN in biomimetic scaffolds so that, as the scaffold degrades, scaffold-loaded KGN was slowly released to induce endogenous mesenchymal stem cells to home and differentiate into chondrocytes to repair defective cartilage tissue. Our experiments have proven that, compared with the control group, GELMA/PEGDA + KGN repaired cartilage defects and restored cartilage to hyaline cartilage. Our study suggests that implementing photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds may be a novel approach to restore cartilage integrity in full-thickness osteochondral defects.
Collapse
Affiliation(s)
- Haiquan Yu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Meng Feng
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Genwen Mao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Qian Li
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Zhifeng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Weiguo Bian
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yusheng Qiu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
22
|
Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201869. [PMID: 35713246 DOI: 10.1002/smll.202201869] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The regeneration of 3D tissue constructs with clinically relevant sizes, structures, and hierarchical organizations for translational tissue engineering remains challenging. 3D printing, an additive manufacturing technique, has revolutionized the field of tissue engineering by fabricating biomimetic tissue constructs with precisely controlled composition, spatial distribution, and architecture that can replicate both biological and functional native tissues. Therefore, 3D printing is gaining increasing attention as a viable option to advance personalized therapy for various diseases by regenerating the desired tissues. This review outlines the recently developed 3D printing techniques for clinical translation and specifically summarizes the applications of these approaches for the regeneration of cartilage, bone, and osteochondral tissues. The current challenges and future perspectives of 3D printing technology are also discussed.
Collapse
Affiliation(s)
- Shenqiang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
23
|
Hann SY, Cui H, Zalud NC, Esworthy T, Bulusu K, Shen YL, Plesniak MW, Zhang LG. An in vitro analysis of the effect of geometry-induced flows on endothelial cell behavior in 3D printed small-diameter blood vessels. BIOMATERIALS ADVANCES 2022; 137:212832. [PMID: 35929247 DOI: 10.1016/j.bioadv.2022.212832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Clinical recovery from vascular diseases has increasingly become reliant upon the successful fabrication of artificial blood vessels (BVs) or vascular prostheses due to the shortage of autologous vessels and the high incidence of vessel graft diseases. Even though many attempts at the clinical implementation of large artificial BVs have been reported to be successful, the development of small-diameter BVs remains one of the significant challenges due to the limitation of micro-manufacturing capacity in complexity and reproducibility, as well as the development of thrombosis. The present study aims to develop 3D printed small-diameter artificial BVs that recapitulate the longitudinal geometric elements in the native BVs using biocompatible polylactic acid (PLA). As their intrinsic physical properties are crystallinity dependent, we used two PLA filaments with different crystallinity to investigate the suitability of their physical properties in the micro-manufacturing of BVs. To explore the mechanism of venous thrombosis, our study provided a preliminarily comparative analysis of the effect of geometry-induced flows on the behavior of human endothelial cells (ECs). Our results showed that the adhered healthy ECs in the 3D printed BV exhibited regulated patterns, such as elongated and aligned parallel to the flow direction, as well as geometry-induced EC response mechanisms that are associated with hemodynamic shear stresses. Furthermore, the computational fluid dynamics simulation results provided insightful information to predict velocity profile and wall shear stress distribution in the geometries of BVs in accordance with their spatiotemporally-dependent cell behaviors. Our study demonstrated that 3D printed small-diameter BVs could serve as suitable candidates for fundamental BV studies and hold great potential for clinical applications.
Collapse
Affiliation(s)
- Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Nora Caroline Zalud
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Kartik Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Michael W Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University Medical Center, Washington, DC 20052, USA.
| |
Collapse
|
24
|
Zhang Q, Bei HP, Zhao M, Dong Z, Zhao X. Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials 2022; 286:121566. [DOI: 10.1016/j.biomaterials.2022.121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
|
25
|
Sang S, Ma Z, Cao Y, Shen Z, Duan J, Zhang Y, Wang L, An Y, Mao X, An Y, Zhang Q. BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Zhuwei Ma
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, PR China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yating Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Lijing Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yuchuan An
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Xingjia Mao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, PR China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, PR China
| | - Qiang Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, PR China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
26
|
Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic Hydrogel for Cartilage Tissue Regeneration as well as a Review on Advantages and Disadvantages of Different Cartilage Repair Strategies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7230354. [PMID: 35434125 PMCID: PMC9012656 DOI: 10.1155/2022/7230354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Biomedical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Maryam Salimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
27
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
28
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
29
|
Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H, Strano MS. Size Selective Corona Interactions from Self-Assembled Rosette and Single-Walled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104951. [PMID: 35060337 DOI: 10.1002/smll.202104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticle corona phases, especially those surrounding anisotropic particles, are central to determining their catalytic, molecular recognition, and interfacial properties. It remains a longstanding challenge to chemically synthesize and control such phases at the nanoparticle surface. In this work, the supramolecular chemistry of rosette nanotubes (RNTs), well-defined hierarchically self-assembled nanostructures formed from heteroaromatic bicyclic bases, is used to create molecularly precise and continuous corona phases on single-walled carbon nanotubes (SWCNTs). These RNT-SWCNT (RS) complexes exhibit the lowest solvent-exposed surface area (147.8 ± 60 m-1 ) measured to date due to its regular structure. Through Raman spectroscopy, molecular-scale control of the free volume is also observed between the two annular structures and the effects of confined water. SWCNT photoluminescence (PL) within the RNT is also modulated considerably as a function of their diameter and chirality, especially for the (11, 1) species, where a PL increase compared to other species can be attributed to their chiral angle and the RNT's inward facing electron densities. In summary, RNT chemistry is extended to the problem of chemically defining both the exterior and interior corona interfaces of an encapsulated particle, thereby opening the door to precision control of core-shell nanoparticle interfaces.
Collapse
Affiliation(s)
- Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Liang Shuai
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Rachel L Beingessner
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Takeshi Yamazaki
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, No.16 Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, 325000, China
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Kelvin Jones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Hicham Fenniri
- Department of Chemical Engineering, Department of Bioengineering, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Derossi A, Paolillo M, Verboven P, Nicolai B, Severini C. Extending 3D food printing application: Apple tissue microstructure as a digital model to create innovative cereal-based snacks. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Chen J, Liu X, Tian Y, Zhu W, Yan C, Shi Y, Kong LB, Qi HJ, Zhou K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102877. [PMID: 34699637 DOI: 10.1002/adma.202102877] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Anisotropy is the characteristic of a material to exhibit variations in its mechanical, electrical, thermal, optical properties, etc. along different directions. Anisotropic materials have attracted great research interest because of their wide applications in aerospace, sensing, soft robotics, and tissue engineering. 3D printing provides exceptional advantages in achieving controlled compositions and complex architecture, thereby enabling the manufacture of 3D objects with anisotropic functionalities. Here, a comprehensive review of the recent progress on 3D printing of anisotropic polymer materials based on different techniques including material extrusion, vat photopolymerization, powder bed fusion, and sheet lamination is presented. The state-of-the-art strategies implemented in manipulating anisotropic structures are highlighted with the discussion of material categories, functionalities, and potential applications. This review is concluded with analyzing the current challenges and providing perspectives for further development in this field.
Collapse
Affiliation(s)
- Jiayao Chen
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaojiang Liu
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Zhu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Bing Kong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hang Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
32
|
Chamorro PB, Aparicio F. Chiral nanotubes self-assembled from discrete non-covalent macrocycles. Chem Commun (Camb) 2021; 57:12712-12724. [PMID: 34749387 DOI: 10.1039/d1cc04968b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many strategies have been used to construct supramolecular hollow tubes, including helical folding of oligomers, bundling of rod-like structures, rolling-up of sheets and stacking of covalent cycles. On the other hand, controlling chirality at the supramolecular level continues attracting much interest because of its implications in future applications of porous systems. This review article covers the main examples in the literature that use simple molecular structures as chiral units for precise assembly into discrete non-covalent cyclic structures that are able to form chiral supramolecular tubular systems.
Collapse
Affiliation(s)
- P B Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - F Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
33
|
McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021; 8:144. [PMID: 34677217 PMCID: PMC8533558 DOI: 10.3390/bioengineering8100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage is an avascular tissue with extremely limited self-regeneration capabilities. At present, there are no existing treatments that effectively stop the deterioration of cartilage or reverse its effects; current treatments merely relieve its symptoms and surgical intervention is required when the condition aggravates. Thus, cartilage damage remains an ongoing challenge in orthopaedics with an urgent need for improved treatment options. In recent years, major advances have been made in the development of three-dimensional (3D) bioprinted constructs for cartilage repair applications. 3D bioprinting is an evolutionary additive manufacturing technique that enables the precisely controlled deposition of a combination of biomaterials, cells, and bioactive molecules, collectively known as bioink, layer-by-layer to produce constructs that simulate the structure and function of native cartilage tissue. This review provides an insight into the current developments in 3D bioprinting for cartilage tissue engineering. The bioink and construct properties required for successful application in cartilage repair applications are highlighted. Furthermore, the potential for translation of 3D bioprinted constructs to the clinic is discussed. Overall, 3D bioprinting demonstrates great potential as a novel technique for the fabrication of tissue engineered constructs for cartilage regeneration, with distinct advantages over conventional techniques.
Collapse
Affiliation(s)
- Sophie McGivern
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
| | - Halima Boutouil
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Ghayadah Al-Kharusi
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Suzanne Little
- Insight SFI Research Centre for Data Analytics, Dublin City University, D09 NA55 Dublin, Ireland;
| | - Nicholas J. Dunne
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tanya J. Levingstone
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
34
|
Lee SJ, Nam Y, Rim YA, Lee K, Ju JH, Kim DS. Perichondrium-inspired permeable nanofibrous tube well promoting differentiation of hiPSC-derived pellet toward hyaline-like cartilage pellet. Biofabrication 2021; 13. [PMID: 34404032 DOI: 10.1088/1758-5090/ac1e76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
The pellet formation has been regarded as a golden standard forin vitrochondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of differentiated cartilage pellet in defective articular cartilage treatment. To address this drawback, a perichondrium-inspired permeable nanofibrous tube (PINaT) well with a nanofibrous wall permeable to gas and soluble molecules is proposed. The PINaT well was fabricated with a micro deep drawing process where a flat thin nanofibrous membrane was transformed to a 3.5 mm deep tube well with a ∼50µm thick nanofibrous wall. Similar toin vivoperichondrium, the PINaT well was found to allow oxygen and growth factor diffusion required for chondrogenic differentiation across the entire nanofibrous wall. Analyses of gene expressions (COL2A1, COL10A1, ACAN, and SOX9), proteins (type II and X collagen), and glycosaminoglycans contents were conducted to assess the differentiation performance and clinical efficacy of differentiated cartilage pellet. The regulated spatially homogeneous chondrogenic microenvironment around the human induced pluripotent stem cell-derived pellet (3 × 105cells per pellet) in the PINaT well remarkably improved the quality of the differentiated pellet toward a more hyaline-like cartilage pellet. Furthermore, an accelerated chondrogenic differentiation process of the pellet produced by the PINaT well was achieved for 14 days, demonstrating a hyaline cartilage-specific marker similar to the control pellet differentiated for 20 days. Finally, the enhanced clinical efficacy of the hyaline-like cartilage pellet was confirmed using an osteochondral defect rat model, with the repaired tissue resembling hyaline cartilage rather than fibrous cartilage after 8 weeks of regeneration.
Collapse
Affiliation(s)
- Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol 2021; 188:657-669. [PMID: 34371047 DOI: 10.1016/j.ijbiomac.2021.07.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/06/2023]
Abstract
Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
36
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
37
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
38
|
3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Int J Mol Sci 2021; 22:ijms22126225. [PMID: 34207601 PMCID: PMC8230141 DOI: 10.3390/ijms22126225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.
Collapse
|
39
|
Jiang Z, Zhang K, Du L, Cheng Z, Zhang T, Ding J, Li W, Xu B, Zhu M. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112178. [PMID: 34082978 DOI: 10.1016/j.msec.2021.112178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Microchannels are effective means of enabling the functional performance of tissue engineering scaffolds. Chitosan, a partial deacetylation derivative of chitin, exhibiting excellent biocompatibility, has been widely used in clinical practice. However, development of chitosan scaffolds with controllable microchannels architecture remains an engineering challenge. Here, we generated chitosan scaffolds with adjustable microchannel by combining a 3D printing microfiber templates-leaching method and a freeze-drying method. We can precisely control the arrangement, diameter and density of microchannel within chitosan scaffolds. Moreover, the integrated bilayer scaffolds with the desired structural parameters in each layer were fabricated and exhibited no delamination. The flow rate and volume of the simulated fluid can be modulated by diverse channels architecture. Additionally, the microchannel structure promoted cell survival, proliferation and distribution in vitro, and improved cell and tissue ingrowth and vascular formation in vivo. This study opens a new road for constructing chitosan scaffolds, and can further extend their application scope across tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhuyan Jiang
- The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaihui Zhang
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Zhaojun Cheng
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Ji Ding
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Baoshan Xu
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
40
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
41
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
42
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
43
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
44
|
Herreros-Pomares A, Zhou X, Calabuig-Fariñas S, Lee SJ, Torres S, Esworthy T, Hann SY, Jantus-Lewintre E, Camps C, Zhang LG. 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111914. [PMID: 33641907 DOI: 10.1016/j.msec.2021.111914] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) in vitro cell cultures and laboratory animals have been used traditionally as the gold-standard preclinical cancer model systems. However, for cancer stem cell (CSC) studies, they exhibit notable limitations on simulating native environment, which depreciate their translatability for clinical development purposes. In this study, different three-dimensional (3D) printing platforms were used to establish novel 3D cell cultures enriched in CSCs from non-small cell lung cancer (NSCLC) patients and cell lines. Rigid scaffolds with an elevated compressive modulus and uniform pores and channels were produced using different filaments. Hydrogel-based scaffolds were printed with a more irregular distribution of pores and a lower compressive modulus. As a 3D model of reference, suspension spheroid cultures were established. Therein, cancer cell lines exhibited enhanced proliferation profiles on rigid scaffolds compared to the same cells grown on either hydrogel scaffolds or tumor spheres. Meanwhile, primary cancer cells grew considerably better on hydrogel scaffolds or in tumor sphere culture, compared to cells grown on rigid scaffolds. Gene expression analysis confirmed that tumor spheres and cells seeded on hydrogel scaffolds significantly overexpress most of stemness and invasion promoters tested compared to control cells grown in 2D culture. A different phenomenon was observed within cells growing on the rigid scaffolds, where fewer significant variations in gene expression were detected. Our findings provide strong evidence for the advantageous usage of 3D printed models, especially those which use GelMA-PEGDA hydrogels as the primary scaffold material, for studying lung CSCs. The results demonstrated that the 3D printed scaffolds were better to mimic tumor complexity and regulate cancer cell behavior than in vivo 2D culture models.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Silvia Calabuig-Fariñas
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Pathology, Universitat de València, Valencia, Spain
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Susana Torres
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Eloísa Jantus-Lewintre
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Camps
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain; Department of Medicine, Universitat de València, Valencia, Spain.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States; Department of Biomedical Engineering, The George Washington University, Washington, DC, United States; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, United States; Department of Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
45
|
Li KD, Wang Y, Sun Q, Li MS, Chen JL, Liu L. Rabbit umbilical cord mesenchymal stem cells: A new option for tissue engineering. J Gene Med 2021; 23:e3282. [PMID: 33047422 DOI: 10.1002/jgm.3282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The source and availability of cells for tissue engineering in large scale research or clinical trials requires special attention. We propose the idea of applying rabbit umbilical cord mesenchymal stem cells for this purpose. METHODS Here, the structure of the rabbit umbilical cord was analyzed and compared to that of human umbilical cord, both macroscopically and histologically. Next, we isolated, cultured and identified the proliferative activity and immunological characteristics of rabbit umbilical cord mesenchymal stem cells in vitro using mixed lymphocyte reaction, flow cytometry and an enzyme-linked immunosorbent assay. Furthermore, we evaluated the effects of biphasic calcium phosphate ceramic scaffolds seeded with rabbit umbilical cord mesenchymal stem cells in rat cranial defect models using multiple techniques, including radiological, histological and immunohistochemistry. RESULTS In vitro studies demonstated a high level of proliferation and multi-lineage differentiation potential in rabbit umbilical cord mesenchymal stem cells. Rabbit umbilical cord mesenchymal stem cells exibited low immunogenicity properties and immune suppression capability with respect to both the allogeneic and xenogeneic immune response. The results of the in vivo study showed that rabbit umbilical cord mesenchymal stem cells could promote osteogenesis in heterogeneous hosts. CONCLUSIONS The rabbit umbilical cord mesenchymal stem cells may be a new source for tissue engineering.
Collapse
Affiliation(s)
- Kai-De Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Quan Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Mei-Sheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin-Long Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
46
|
Lepeltier E, Levet V, Lee T, Mignet N, Shen J, Fenniri H, Corvis Y. Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications. Front Chem 2020; 8:626468. [PMID: 33363121 PMCID: PMC7755928 DOI: 10.3389/fchem.2020.626468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, Inserm 1066, CNRS, Angers, France
| | - Vincent Levet
- GSK Vaccines, Rue de l'Institut 89, Rixensart, Belgium
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, Paris, France
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hicham Fenniri
- Departments of Chemical Engineering, Bioengineering, Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, Paris, France
| |
Collapse
|
47
|
Wang P, Zhu P, Liu R, Meng Q, Li S. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-1α. Exp Ther Med 2020; 20:226. [PMID: 33193840 DOI: 10.3892/etm.2020.9356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chinese herbal extracts are being used increasingly to treat osteoarthritis (OA) in recent years. Baicalin (BA) is an active component of Scutellaria baicalensis Georgi extracts and protects chondrocytes against damage. The aim of the present study was to examine the mechanism of action of BA on chondrocytes from mouse articular cartilage. In total, 44 µM BA and 10 µM hypoxia-inducible-factor-1α (HIF-1α) inhibitor BAY-87-2243 were screened by the [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] method. Alcian blue and Safran O staining were used to investigate the synthesis of extracellular matrix (ECM) in chondrocytes treated with BA. The expression of HIF-1α and chondrogenic marker genes including SOX9, AGG and Col2α was detected by western blotting or reverse-transcription quantitative (RT-qPCR), the expression of PHD1,2,3 and catabolic genes including ADAMTS5, MMP9 and MMP13 were detected by RT-qPCR. To investigate the effect of BA on the ECM synthesis of chondrocytes, 44 µM BA and 10 µM BAY were chosen for further experimentation. It was confirmed that BA at a concentration of 44 µM could significantly promote the secretion of ECM. The expressions of genes including HIF-1α, SOX9, collagen type 2 (Col2α) and aggrecan (AGG) were elevated following BA pretreatment and decreased by subsequent BAY-87-2243 stimulation for 24 h. Compared with untreated chondrocytes, the expressions of genes including ADAMTS5, MMP9, MMP13, PHD1, PHD2 and PHD3 in chondrocytes treated by BA were downregulated, however, BAY-87-2243 reversed the effect of BA on the genes including ADAMTS5, MMP9, MMP13, PHD1, PHD2 and PHD3 in chondrocytes. The findings of the present study suggest that BA may promote ECM synthesis and marker gene expression in chondrocytes by activating HIF-1α. Therefore, BA may represent a novel clinical drug for OA.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Pingping Zhu
- Department of Internal Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Ruijia Liu
- Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China.,Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
48
|
Qian M, Shi Y, Yu M. The association between obesity and chronic pain among community-dwelling older adults: a systematic review and meta-analysis. Geriatr Nurs 2020; 42:8-15. [PMID: 33197704 DOI: 10.1016/j.gerinurse.2020.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To systematically review studies and explore the association between obesity and chronic pain among community-dwelling older adults. METHODS A comprehensive literature search was conducted in 9 databases and the Pubmed search engine from their inception to March 19, 2020. Studies that investigated the associations between overweight/obesity and chronic pain among older people were obtained. Comprehensive Meta-analysis was used to meta-analyze the eligible studies. RESULTS Totally 14 studies with 40,999 participants were included in this review, and 8 of these studies were meta-analyzed. The meta-analyses showed that both overweight (pooled OR = 1.166, 95% CI: 1.104-1.232, p < 0.01) and obesity (pooled OR = 1.786, 95% CI: 1.530-2.085, p < 0.01) had significant associations with chronic pain among older adults. CONCLUSIONS Overweight and obesity are both associated with chronic pain among older adults. It is suggested that body weight control strategies might be incorporated into the pain management program for older adults with obesity.
Collapse
Affiliation(s)
- Min Qian
- School of Nursing, Peking University, Beijing, P.R. China.
| | - Yuexian Shi
- School of Nursing, Peking University, Beijing, P.R. China
| | - Mingming Yu
- School of Nursing, Peking University, Beijing, P.R. China.
| |
Collapse
|