1
|
Mi X, Liu L, Yang S, Wu P, Zhan W, Ji X, Liang J. Ink formulation of functional nanowires with hyperbranched stabilizers for versatile printing of flexible electronics. Nat Commun 2025; 16:2590. [PMID: 40091079 PMCID: PMC11911445 DOI: 10.1038/s41467-025-57959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Functional nanowire ink formulations require elaborate control over their composition, rheological properties, and fluidic properties to optimize their printing processes. They also require harsh post-fabrication treatments to maximize the performance of the resulting printed flexible devices, making it challenging to uniformly deposit nanowire-based architectures and ensure device reproducibility and scalability. Here, we propose a strategy for developing silver nanowire (AgNW) ink formulations, where hyperbranched molecules (HPMs) are employed as both dispersant and stabilizer for nanowires. The three-dimensional architecture with functional groups on the periphery of HPMs enables the preparation of thixotropic HPMs-AgNW inks with solid contents of up to 20 wt.% in both aqueous and organic solvents using a low amount of HPMs (AgNW and HPMs weight ratio = 1:0.001). The HPMs-AgNW inks can be printed into patterns with a resolution of 20 μm on various flexible substrates without needing harsh post-treatments. We obtain bar-coated transparent electrodes (sheet resistance of 17.1 Ω sq-1 at 94.7% transmittance), slot-die-coated flexible conductive patterns, screen-printed conductive lines (conductivity exceeding 6.2 × 104 S cm-1), and 3D printed stretchable wires. Importantly, this HPMs-stabilized formulation strategy is general for various functional nanowires, enabling the integration of a diverse set of nanowire-based wearable electronic systems.
Collapse
Affiliation(s)
- Xiaoqian Mi
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Lixue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Shujia Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Peiqi Wu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Weiqing Zhan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Fan J, Kuo YC, Yin T, Guan P, Meng L, Chen F, Feng Z, Liu C, Wan T, Han Z, Hu L, Peng S, Wu T, Chu D. One-Step Synthesis of Graphene-Covered Silver Nanowires with Enhanced Stability for Heating and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39600-39612. [PMID: 39041667 DOI: 10.1021/acsami.4c06483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Solution-processed silver nanowire (AgNW) networks have been considered as promising electrode candidates for next-generation electronic devices. However, they suffer from poor thermal and electrical stability and low mechanical properties, hindering their practical applications. In this work, graphene nanosheets are successfully introduced into AgNW via a facile one-step solvothermal process. Benefiting from increased conductive paths, the resultant AgNW/graphene films exhibit high electrical conductivity. More importantly, the interlocking NW morphology can be maintained under high temperature and applied voltage due to suppressed Ag migration, which is enabled by the introduction of graphene. This feature leads to enhanced thermal and electrical stability, making them suitable for use as transparent heaters. Furthermore, the composite films present excellent mechanical performance, and negligible resistance change is observed after 10 000 repeated bending cycles. To demonstrate their feasibility toward sensor applications, sandwiched strain sensors are designed, which can endure larger tensile strains and show higher sensitivity and repeatability compared with pure AgNW-based device. Furthermore, various hand gestures can be easily recognized by the resultant sensors based on unique combinations of sensing response. This work not only provides a low-cost method to realize large-scale synthesis of AgNW/graphene composites but also offers guidance to prepare high-performance electrodes for advanced electronics.
Collapse
Affiliation(s)
- Jiajun Fan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu-Chieh Kuo
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Linghui Meng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 310028, China
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Jin Y, Yu M, Nguyen DT, Yang X, Li Z, Xiong Z, Li C, Liu Y, Kong YL, Ho JS. Digitally-defined ultrathin transparent wireless sensor network for room-scale imperceptible ambient intelligence. NPJ FLEXIBLE ELECTRONICS 2024; 8:10. [PMID: 39640986 PMCID: PMC11619817 DOI: 10.1038/s41528-024-00293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/05/2024] [Indexed: 12/07/2024]
Abstract
Wireless and battery-free radio-frequency (RF) sensors can be used to create physical spaces that ambiently sense and respond to human activities. Making such sensors ultra-flexible and transparent is important to preserve the aesthetics of living environments, accommodate daily activities, and functionally integrate with objects. However, existing RF sensors are unable to simultaneously achieve high transparency, flexibility, and the electrical conductivity required for remote room-scale operation. Here, we report 4.5 μm RF tag sensors achieving transparency exceeding 90% that provide capabilities in room-scale ambient wireless sensing. We develop a laser-assisted water-based adhesion-reversion process to digitally realize computer-aided RF design at scale. By individually tagging multiple objects and regions of the human body, we demonstrate multiplexed wireless tracking of human-environment interactions and physiological signals at a range of up to 8 m. These radio-frequency identification sensors open opportunities for non-intrusive wireless sensing of daily living spaces for applications in health monitoring and elderly care.
Collapse
Affiliation(s)
- Yunxia Jin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - Mengxia Yu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Dat T. Nguyen
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore Graduate School, Singapore 119077, Singapore
| | - Xin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhipeng Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ze Xiong
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Chenhui Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuxin Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| | - Yong Lin Kong
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - John S. Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
4
|
Wang J, Wang K, Xiao F. A simple and efficient transfer method for fabricating stretchable AgNW patterns on PDMS using carboxylated cellulose nanofibers as a sacrificial layer. NANOSCALE 2023; 15:9031-9039. [PMID: 37144821 DOI: 10.1039/d3nr01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Silver nanowire (AgNW) networks are one of the most promising materials of transparent electrodes in flexible applications. However, they still face challenges in fabricating AgNW transparent conductive films (TCFs) with excellent comprehensive performance on stretchable substrates. In this work, we developed an efficient and simple water-assisted method to completely transfer AgNW films from glass to polydimethylsiloxane (PDMS). Carboxylated cellulose nanofibers (CNF-C) are introduced between the AgNW network and glass as a sacrificial layer, which is dissolved in water in the transfer process, releasing the AgNW network on the PDMS. The transferred AgNW networks show an increase of sheet resistance less than 30% and a slight decrease of transmittance. The stretchable AgNW TCFs exhibited good opto-electrical performance with a figure of merit of about 200, low surface roughness, good film uniformity, long-term stability, electrical stability and mechanical performance. Two patterning approaches based on the transfer method were proposed and fine stretchable AgNW patterns with a linewidth of 200 μm were fabricated. The fabricated stretchable AgNW patterns were used in flexible wires, a film heater and sensors as a demonstration.
Collapse
Affiliation(s)
- Jianzhong Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| | - Kaiqing Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| | - Fei Xiao
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
5
|
Kim D, Hong N, Hong W, Lee J, Bissannagari M, Cho Y, Kwon HJ, Jang JE, Kang H. Inkjet-Printed Polyelectrolyte Seed Layer-Based, Customizable, Transparent, Ultrathin Gold Electrodes and Facile Implementation of Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20508-20519. [PMID: 37039810 DOI: 10.1021/acsami.3c01160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, interest in transparent electrodes has been increasing in biomedical engineering applications for such as electro-optical hybrid neuro-technologies. However, conventional photolithography-based electrode fabrication methods have limited design customization and large-area applicability. For biomedical engineering applications, it is crucial that we can easily customize the electrode design for different patients over a large body area. In this paper, we propose a novel method to fabricate customization-friendly, transparent, ultrathin, gold microelectrodes using inkjet printing technology. Unlike with typical direct printing of conductive inks, we inkjet-printed a polymer nucleation-inducing seed layer, followed by mask-less vacuum deposition of ultrathin gold (<6 nm) to produce selectively, high-transparency electrodes in the predefined shapes of the inkjet-printed polymer. Owing to the design flexibility of inkjet printing, the transparent ultrathin gold electrodes can be highly efficient in design customization over a large area. Simultaneously, a layer of nonconductive gold islands is formed in the nonprinted region, and this nanostructured layer can implement a photothermal effect that offers versatility for novel biomedical applications. As a demonstration of the effectiveness of these transparent electrodes, and the facile implementation of the photothermal effect for biomedical applications, we successfully fabricated transparent resistive temperature detectors. We used these to directly sense the photothermal effect and to demonstrate their bioimaging capabilities.
Collapse
Affiliation(s)
- Duhee Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nari Hong
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Information and Communication Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Woongki Hong
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Junhee Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Murali Bissannagari
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Information and Communication Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Youngjae Cho
- Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyuk-Jun Kwon
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Wang J, Jin Y, Wang K, Wang X, Xiao F. Facile Transfer of a Transparent Silver Nanowire Pattern to a Soft Substrate Using Graphene Oxide as a Double-Sided Adhesion-Tuning Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5709-5719. [PMID: 36683282 DOI: 10.1021/acsami.2c21697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silver nanowires (AgNWs) have been employed in various optoelectronic devices as transparent electrodes. However, it remains a great challenge to facilely pattern silver nanowires to realize desirable soft skin devices. Here, we develop an intact transfer method via a double-layered adhesion regulator of graphene oxide (GO) enabling complete transfer of a silver nanowire pattern from a tough substrate onto soft polydimethylsiloxane (PDMS) and flexible polyethylene (PE). We achieve positive and negative patterns simultaneously when selectively transferring silver nanowire patterns. The resulting patterned AgNW electrodes have uniform conductivity and long-term stability. The underlying mechanism of the clean transfer is thoroughly investigated via transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). GO plays a role in reducing the adhesion of AgNW to the donor tough substrate and enhancing adhesion of AgNW to the target soft substrate simultaneously. Finally, we demonstrate the utility of the patterned electrodes as transparent sensors detecting body motion. This work offers an effective solution to the challenging patterning problem of silver nanowires on a hydrophobic soft substrate, which is compatible with the soft component in emerging smart skin or wearable electronics.
Collapse
Affiliation(s)
- Jianzhong Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yunxia Jin
- Institute for Health Innovation & Technology, National University of Singapore, 14 Medical Drive, 117599 Singapore
| | - Kaiqing Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiaocun Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Fei Xiao
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
7
|
Kim J, Kim M, Jung H, Park J, Jun BO, Kang B, Jang JE, Lee Y. High-Quality Microprintable and Stretchable Conductors for High-Performance 5G Wireless Communication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53250-53260. [PMID: 36382782 DOI: 10.1021/acsami.2c18424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 μm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 μΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4-8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byoung Ok Jun
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
9
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
10
|
Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink. NANOMATERIALS 2021; 11:nano11061571. [PMID: 34203673 PMCID: PMC8232118 DOI: 10.3390/nano11061571] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The inkjet printing process is a promising electronic printing technique for large-scale, printed, flexible and stretchable electronics because of features such as its high manufacturing speed, environmental friendliness, simple process, low cost, accurate positioning, and so on. As the base material of printed conductive patterns, conductive ink is the foundation of the development of printed electronics technology, and directly affects the performance and the quality of electronic products. In this paper, conductive ink with silver nanowires (AgNWs) was prepared, with AgNWs of lengths of 2–5 µm and diameters of 20 nm or so, isopropyl alcohol and ethylene glycol as the mixed solvents, and modified polysilane as the wetting agent. We discussed the relationship between the formula of the AgNWs ink and the surface tension, viscosity, contact angle between ink droplet and poly(ethylene) terephthalate (PET) surface, as well as the film-forming properties of the ink. Further, we analyzed the effects of the number of printed layers and the ink concentration of the AgNWs on the microstructures, photoelectric properties and accuracy of the printed patterns, as well as the change in the sheet resistance of the film during different bending cycles. The experimental results show that flexible transparent conductive patterns with a light transmittance of 550 nm of 83.1–88.4% and a sheet resistance of 34.0 Ω∙sq−1–78.3 nm∙sq−1 can be obtained by using AgNWs ink of 0.38 mg∙mL−1 to 0.57 mg∙mL−1, a poly (ethylene terephthalate) (PET) substrate temperature of 40 °C, a nozzle temperature of 35 °C, and heat treated at 60 °C for 10 min. These performances indicate the excellent potential of the inkjet printing of AgNWs networks for developing flexible transparent conductive film.
Collapse
|
11
|
Li D, Wang L, Ji W, Wang H, Yue X, Sun Q, Li L, Zhang C, Liu J, Lu G, Yu HD, Huang W. Embedding Silver Nanowires into a Hydroxypropyl Methyl Cellulose Film for Flexible Electrochromic Devices with High Electromechanical Stability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1735-1742. [PMID: 33356085 DOI: 10.1021/acsami.0c16066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transparent conductive films (TCFs) based on silver nanowires (AgNWs) are becoming one of the best candidates in realizing flexible optoelectronic devices. The AgNW-based TCF is usually prepared by coating AgNWs on a transparent polymer film; however, the coated AgNWs easily detach from the polymer underneath because of the weak adhesion between them. Herein, a network of AgNWs is embedded in the transparent hydroxypropyl methyl cellulose film, which has a strong adhesion with the AgNWs. The obtained TCF shows high optical transmittance (>85%), low roughness (rms = 4.8 ± 0.5 nm), and low haze (<0.2%). More importantly, owing to the embedding structure and strong adhesion, this TCF also shows excellent electromechanical stability, which is superior to the reported ones. Employing this TCF in a flexible electrochromic device, the obtained device exhibits excellent cyclic electromechanical stability and high coloring efficiency. Our work demonstrates a promising TCF with superior electromechanical stability for future applications in flexible optoelectronics.
Collapse
Affiliation(s)
- Donghai Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Li Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Wenhui Ji
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Hongchen Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Xiaoping Yue
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qizeng Sun
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Lin Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengwu Zhang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jinhua Liu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gang Lu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Wei Huang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| |
Collapse
|