1
|
Sun S, Chen J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46988-47002. [PMID: 39190320 PMCID: PMC11403555 DOI: 10.1021/acsami.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early cancer detection is crucial for effective treatment, but current methods have limitations. Novel biomaterials, such as hydrogels, offer promising alternatives for developing biosensors for cancer detection. Hydrogels are three-dimensional and cross-linked networks of hydrophilic polymers that have properties similar to biological tissues. They can be combined with various biosensors to achieve high sensitivity, specificity, and stability. This review summarizes the recent advances in hydrogel-based biosensors for cancer detection, their synthesis, their applications, and their challenges. It also discusses the implications and future directions of this emerging field.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Gagni P, Lodigiani G, Frigerio R, Cretich M, Gori A, Bergamaschi G. Supramolecular Hydrogels for 3D Biosensors and Bioassays. Chemistry 2024; 30:e202400974. [PMID: 38871646 DOI: 10.1002/chem.202400974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Supramolecular hydrogels play a pivotal role in many fields of biomedical research, including emerging applications in designing advanced tools for point-of-care testing, clinical diagnostics, and lab-on-chip analysis. This review outlines the growing relevance of supramolecular hydrogels in biosensing and bioassay devices, highlighting recent advancements that deliver increased sensitivity, real-time monitoring, and multiplexing capabilities through the distinctive properties of these nanomaterials. Furthermore, the exploration extends to additional applications, such as using hydrogels as three-dimensional matrices for cell-based assays.
Collapse
Affiliation(s)
- Paola Gagni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Giulia Lodigiani
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| |
Collapse
|
3
|
Wang X, Huo H, Zhong Y, Yang Y, Lin H, Cao L, Wang Q, Xu C, Lin Z, Li W, Zhang P. Synergistic Antimicrobial Glycyrrhizic Acid-Based Functional Biosensing Composite for Sensitive Glucose Monitoring and Collaborative Wound Healing. Adv Healthc Mater 2024; 13:e2400580. [PMID: 38574340 DOI: 10.1002/adhm.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/06/2024]
Abstract
High glucose blood and bacterial infection remain major issues for the slow healing of diabetic wounds, so developing functional biosensing composite with excellent antibacterial and remarkable glucose response sensitivity is necessary and prospective. Herein, by in situ synthesis AgNPs on the surface of self-prepared PTIGA elastomers, PTIGA-AgNPs conductive composites are obtained with efficient synergistic antibacterial effect, excellent mechanical and self-healing properties. The strain of the composites can reach 1800%, and its self-healing efficiency exceeds 90% at 60 °C within 8 h. Both elastomers and composites represent excellent biocompatibility and the antibacterial rate against E. coli and S. aureus exceeded 90%. Moreover, the biosensor assembled from the conductive composites exhibits excellent glucose response sensitivity and stability, with a sensitivity coefficient of 0.518 mA mm-1 in the range of 0.2-3.6 × 10-3 m glucose concentration, as well as a low detection limit of 0.08 × 10-3 m. Furthermore, based on the remarkable antibacterial performance and bioactivity derived from GA, the composites reduce the expression of pro-inflammatory factors and promote the production of anti-inflammatory factors, and effectively promote the regeneration of skin and granulation tissue of wounds in a diabetic full-thickness skin defect model, demonstrating the enormous therapeutic potential in diabetic wound healing.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Haoling Huo
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Yanming Zhong
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Yingfei Yang
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Huaijun Lin
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Lin Cao
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Congjie Xu
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Wei Li
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Peng Zhang
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
García-Faustino LL, Morris SM, Elston SJ, Montelongo Y. Detection of Biomarkers through Functionalized Polymers. SMALL METHODS 2024; 8:e2301025. [PMID: 37814377 DOI: 10.1002/smtd.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/11/2023]
Abstract
Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.
Collapse
Affiliation(s)
- Litzy L García-Faustino
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Yunuen Montelongo
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
5
|
Guo Y, Li W, Zhang R, Cao S, Zhu X, Chen G, Feng C. A portable and partitioned DNA hydrogel chip for multitarget detection. LAB ON A CHIP 2023; 23:2601-2610. [PMID: 37139578 DOI: 10.1039/d2lc01127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A DNA hydrogel, owing to its dual properties of liquid and solid, is considered to be an ideal material for constructing biosensors that can integrate the advantages of both wet chemistry and dry chemistry. Nevertheless, it has struggled to cope with the demands of high-throughput analysis. A partitioned and chip-based DNA hydrogel is a potential avenue to achieve this, but currently remains a formidable challenge. Here, we developed a portable and partitioned DNA hydrogel chip that can be used for multitarget detection. The partitioned and surface-immobilized DNA hydrogel chip was formed by inter-crosslinking amplification by incorporating target-recognizing fluorescent aptamer hairpins into multiple rolling circle amplification products, which can achieve portable and simultaneous detection of multiple targets. This approach expands the application of semi-dry chemistry strategies, which can realize high throughput and point of care testing (POCT) of different targets, improving the development of hydrogel-based bioanalysis and providing new potential solutions for biomedical detection.
Collapse
Affiliation(s)
- Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
6
|
Alanazi N, Almutairi M, Alodhayb AN. A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications. SENSING AND IMAGING 2023; 24:10. [PMID: 36908332 PMCID: PMC9985094 DOI: 10.1007/s11220-023-00413-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Humans are fundamentally interested in monitoring and understanding interactions that occur in and around our bodies. Biological interactions within the body determine our physical condition and can be used to improve medical treatments and develop new drugs. Daily life involves contact with numerous chemicals, ranging from household elements, naturally occurring scents from common plants and animals, and industrial agents. Many chemicals cause adverse health and environmental effects and require regulation to prevent pollution. Chemical detection is critically important for food and environmental quality control efforts, medical diagnostics, and detection of explosives. Thus, sensitive devices are needed for detecting and discriminating chemical and biological samples. Compared to other sensing devices, the Quartz Crystal Microbalance (QCM) is well-established and has been considered and sufficiently sensitive for detecting molecules, chemicals, polymers, and biological assemblies. Due to its simplicity and low cost, the QCM sensor has potential applications in analytical chemistry, surface chemistry, biochemistry, environmental science, and other disciplines. QCM detection measures resonate frequency changes generated by the quartz crystal sensor when covered with a thin film or liquid. The quartz crystal is sandwiched between two metal (typically gold) electrodes. Functionalizing the electrode's surface further enhances frequency change detection through to interactions between the sensor and the targeted material. These sensors are sensitive to high frequencies and can recognize ultrasmall masses. This review will cover advancements in QCM sensor technologies, highlighting in-sensor and real-time analysis. QCM-based sensor function is dictated by the coating material. We present various high-sensitivity coating techniques that use this novel sensor design. Then, we briefly review available measurement parameters and technological interventions that will inform future QCM research. Lastly, we examine QCM's theory and application to enhance our understanding of relevant electrical components and concepts.
Collapse
Affiliation(s)
- Nadyah Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Maram Almutairi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
7
|
Zhu J, Xie Y. Research on Dual-Technology Fusion Biosensor Chip Based on RNA Virus Medical Detection. MICROMACHINES 2022; 13:1523. [PMID: 36144144 PMCID: PMC9506488 DOI: 10.3390/mi13091523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the emergence of COVID-19 and other epidemics caused by RNA(ribonucleic acid)-type genetic viruses has aroused the close attention of governments around the world on emergency response to public safety and health emergencies. In this paper, an electrodeless biosensing detection chip for RNA virus medical detection is designed using quartz crystal microbalance technology and local surface plasmon resonance technology. The plasmonic resonance characteristic in the nanostructures of gold nanorods-quartz substrates with different parameters and the surface potential distribution of the quartz crystal microbalance sensing chip were studied by COMSOL finite element simulation software. The results show that the arrangement structure and spacing of gold nanorod dimers greatly affect the local surface plasmon resonance of nanorods, which in turn affects the detection results of biomolecules. Moreover, high concentrations of "hot spots" are distributed between both ends and the gap of the gold nanorod dimer, which reflects the strong hybridization of the multiple resonance modes of the nanoparticles. In addition, by simulating and calculating the surface potential distribution of the electrode area and non-electrode area of the biosensor chip, it was found that the biosensor chip with these two areas can enhance the piezoelectric effect of the quartz chip. Under the same simulation conditions, the biochip with a completely electrodeless structure showed a better sensing performance. The sensor chip combining QCM and LSPR can reduce the influence of the metal electrode on the quartz wafer to improve the sensitivity and accuracy of detection. Considering the significant influence of the gold nanorod dimer plasma resonance mode and the significant advantages of the electrodeless biosensor chip, an electrodeless biosensor combining these two technologies is proposed for RNA virus detection and screening, which has potential applications in biomolecular measurement and other related fields.
Collapse
Affiliation(s)
- Jin Zhu
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yushan Xie
- College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| |
Collapse
|
8
|
Feyzioğlu-Demir E, Üzüm ÖB, Akgöl S. Swelling and diffusion behaviour of spherical morphological polymeric hydrogel membranes (SMPHMs) containing epoxy groups and their application as drug release systems. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Zhao H, Yuan X, Yang X, Bai F, Mao C, Zhao L. Nitrogen-Doped Carbon Dot and CdTe Quantum Dot Dual-Color Multifunctional Fluorescent Sensing Platform: Sensing Behavior and Glucose and pH Detection. Inorg Chem 2021; 60:15485-15496. [PMID: 34592811 DOI: 10.1021/acs.inorgchem.1c02109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel fluorescent probe based on a nitrogen-doped carbon dot (N-CD) and CdTe quantum dot (CdTe QD) platform has been constructed for H2O2/glucose detection and pH sensing. In this work, H2O2-tolerant blue fluorescence N-CDs were added to the H2O2-mediated yellow fluorescence quenching of CdTe QDs to construct a dual-color ratiometric fluorescent H2O2 probe. H2O2-induced passivated group detachment and action on deep nanocrystals promoted CdTe QD fluorescence quenching. Meanwhile, the addition of the blue fluorescent background of N-CDs sharply reflected the color change in CdTe QDs. Under the optimized experimental conditions, the platform was effectively applied to the detection of H2O2 produced by the enzymatic reaction of glucose, showing high sensitivity (limit of detection 7.86 μM) and wide linear range (26-900 μM) for glucose detection. The pH-sensing behavior of CdTe QDs and N-CDs was attributed to the displacement of a weak acid (3-mercaptopropionic acid) by a strong acid (HCl) and the acid titration process of two coexisting bases (N-CDs and NH3·H2O), respectively. The loss of passivation and doping effects led to a decrease in the fluorescence intensity of CdTe QDs and N-CDs. Moreover, utilizing the ability of bimaterial system fluorescence to pH sensing, a semiquantitative pH detection based on the linear response was developed. The pH range was analyzed by three kinds of N-CD (Fex = 440 nm) and CdTe QD (Fex = 548 nm) typical emission spectral shapes. In addition, the recovery results showed that the bimaterial system was proved to be appropriate for the assay of glucose in spiked serum samples.
Collapse
Affiliation(s)
- Hanqing Zhao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xucan Yuan
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiuying Yang
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, People's Republic of China
| | - Fujuan Bai
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Chunling Mao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Longshan Zhao
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
10
|
Murphy AC, Wechsler ME, Peppas NA. Recent Advancements in Biosensing Approaches for Screening and Diagnostic Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100318. [PMID: 34458653 PMCID: PMC8389739 DOI: 10.1016/j.cobme.2021.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advancements in molecular recognition have provided additional diagnostic and treatment approaches for multiple diseases, including autoimmune disorders and cancers. Research investigating how the composition of biological fluids is altered during disease progression, including differences in the expression of the small molecules, proteins, RNAs, and other components present in patient tears, saliva, blood, urine, or other fluids, has provided a wealth of potential candidates for early disease screening; however, adoption of biomarker screening into clinical settings has been challenged by the need for more robust, low-cost, and high-throughput assays. This review examines current approaches in molecular recognition and biosensing for the quantification of biomarkers for disease screening and diagnostic outcomes.
Collapse
Affiliation(s)
- Andrew C Murphy
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, 78712, USA
- College of Pharmacy, The University of Texas at Austin, Austin TX, 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin TX, 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin TX, 78723, USA
| |
Collapse
|
11
|
Zhang Z, Wang S, Liu G, Hu D, Yang B, Dai Q, Dou Q. Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring. RSC Adv 2021; 11:27561-27569. [PMID: 35480666 PMCID: PMC9037900 DOI: 10.1039/d1ra03517g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 01/28/2023] Open
Abstract
A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shiwen Wang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Guanjiang Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bei Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Dai
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
12
|
Kalasin S, Sangnuang P, Surareungchai W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Anal Chem 2021; 93:10661-10671. [PMID: 34288659 DOI: 10.1021/acs.analchem.1c02085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serum creatinine level is commonly recognized as a measure of glomerular filtration rate (GFR) and is defined as an indicator of overall renal health. A typical procedure in determining kidney performance is venipuncture to obtain serum creatinine in the blood, which requires a skilled technician to perform on a laboratory basis and multiple clinical steps to acquire a meaningful result. Recently, wearable sensors have undergone immense development, especially for noninvasive health monitoring without a need for a blood sample. This article addresses a fiber-based sensing device selective for tear creatinine, which was fabricated using a copper-containing benzenedicarboxylate (BDC) metal-organic framework (MOF) bound with graphene oxide-Cu(II) and hybridized with Cu2O nanoparticles (NPs). Density functional theory (DFT) was employed to study the binding energies of creatinine toward the ternary hybrid materials that irreversibly occurred at pendant copper ions attached with the BDC segments. Electrochemical impedance spectroscopy (EIS) was utilized to probe the unique charge-transfer resistances of the derived sensing materials. The single-use modified sensor achieved 95.1% selectivity efficiency toward the determination of tear creatinine contents from 1.6 to 2400 μM of 10 repeated measurements in the presence of interfering species of dopamine, urea, and uric acid. The machine learning with the supervised training estimated 83.3% algorithm accuracy to distinguish among low, moderate, and high normal serum creatinine by evaluating tear creatinine. With only one step of collecting tears, this lab-on-eyeglasses with disposable hybrid textile electrodes selective for tear creatinine may be greatly beneficial for point-of-care (POC) kidney monitoring for vulnerable populations remotely, especially during pandemics.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology, Thonburi 10140, Thailand
| | - Pantawan Sangnuang
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand.,School of Bioresource and Technology, King Mongkut's University of Technology, Thonburi 10150, Thailand
| |
Collapse
|
13
|
Wang S, Liu G, Yang B, Zhang Z, Hu D, Wu C, Qin Y, Dou Q, Dai Q, Hu W. Low-fouling CNT-PEG-hydrogel coated quartz crystal microbalance sensor for saliva glucose detection. RSC Adv 2021; 11:22556-22564. [PMID: 35480473 PMCID: PMC9034414 DOI: 10.1039/d1ra02841c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Saliva glucose detection based on a quartz crystal microbalance (QCM) sensor has emerged as a promising tool and a non-invasive diagnostic technique for diabetes. However, the low glucose concentration and strong protein interference in the saliva hinder the QCM sensors from practical applications. In this study, we present a robust and simple anti-fouling CNT-PEG-hydrogel film-coated QCM sensor for the detection of saliva glucose with high sensitivity. The CNT-PEG-hydrogel film consists of two layers; the bottom base PBA-hydrogel film is designed to recognize the glucose while the top CNT-PEG layer is used to restrict protein adsorption and improve the biocompatibility. Our results show that this CNT-PEG-hydrogel film exhibited a 10-fold enhancement on the detection limit compared to the PBA-hydrogel. Meanwhile, the adsorption of proteins on the surface of the CNT-PEG-hydrogel film, including bovine serum albumin (BSA), mucin (MUC), and fibrinogen (FIB), were reduced by 99.1%, 77.8%, and 83.7%, respectively. The CNT-PEG-hydrogel film could detect the typical saliva glucose level (0-50 mg L-1) in 10% saliva with a good responsivity. To sum up, this new tool with low-fouling film featuring high stability, specificity, and selectivity holds great potential for non-invasive monitoring of saliva glucose in human physiological levels.
Collapse
Affiliation(s)
- Shiwen Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Guanjiang Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Bei Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Zifeng Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Chenchen Wu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Yaling Qin
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
| |
Collapse
|
14
|
Herrmann A, Haag R, Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv Healthc Mater 2021; 10:e2100062. [PMID: 33939333 PMCID: PMC11468738 DOI: 10.1002/adhm.202100062] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels play an important role in the field of biomedical research and diagnostic medicine. They are emerging as a powerful tool in the context of bioanalytical assays and biosensing. In this context, this review gives an overview of different hydrogels and the role they adopt in a range of applications. Not only are hydrogels beneficial for the immobilization and embedding of biomolecules, but they are also used as responsive material, as wearable devices, or as functional material. In particular, the scientific and technical progress during the last decade is discussed. The newest hydrogel types, their synthesis, and many applications are presented. Advantages and performance improvements are described, along with their limitations.
Collapse
Affiliation(s)
- Anna Herrmann
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Rainer Haag
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinTakustr. 3Berlin14195Germany
| | - Uwe Schedler
- PolyAn GmbHRudolf‐Baschant‐Straße 2Berlin13086Germany
| |
Collapse
|
15
|
|
16
|
Zhang Z, Dou Q, Wang S, Hu D, Yang B, Zhao Z, Liu H, Dai Q. The development of an antifouling interpenetrating polymer network hydrogel film for salivary glucose monitoring. NANOSCALE 2020; 12:22787-22797. [PMID: 33174578 DOI: 10.1039/d0nr05854h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to its rapid response and broad detection range, a phenylboronic acid (PBA)-functionalized hydrogel film-coated quartz crystal microbalance (QCM) sensor is used to non-invasively monitor salivary glucose in diabetic patients. However, nonspecific protein adsorption on the PBA-functionalized hydrogel film can cause dramatic loss of sensitivity and accuracy of the sensor. A traditional zwitterionic polymer surface with ultra-low protein fouling can hinder the interaction of PBA in the hydrogel matrix with glucose molecules owing to its steric hindrance, resulting in poor glucose sensitivity of the sensor. Herein, we developed a novel hydrogel film that enhanced the antifouling properties and sensitivity of the QCM sensor by infiltrating a glucose-sensitive monomer (i.e., PBA) into a zwitterionic polymer brush matrix to form an interpenetrating polymer network (IPN). The IPN hydrogel film could minimize the glucose sensitivity loss since the antifouling polymer distributed in its matrix. Moreover, a stable hydration layer was formed in this film that could prevent water from transporting out of the matrix, thus further improving its antifouling properties and glucose sensitivity. The experimental results confirmed that the IPN hydrogel film possessed excellent resistance to protein fouling by mucin from whole saliva with reductions in adsorption of nearly 88% and could also enhance the glucose sensitivity by nearly 2 fold, compared to the PBA-functionalized hydrogel film. Therefore, the IPN hydrogel film provides improved antifouling properties and sensitivity of the QCM sensor, which paves the way for non-invasive monitoring of low concentrations of glucose in saliva.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|