1
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2025; 45:556-590. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Patra S, Pareek D, Gupta PS, Wasnik K, Singh G, Yadav DD, Mastai Y, Paik P. Progress in Treatment and Diagnostics of Infectious Disease with Polymers. ACS Infect Dis 2024; 10:287-316. [PMID: 38237146 DOI: 10.1021/acsinfecdis.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach. Variations in shape, size, surface charge, internal morphology, and functionalization position polymer particles as a revolutionary material in healthcare. Here, an overview is provided of major diseases along with statistics on infection and death rates, focusing on polymer-based treatments and modes of action. Key issues are discussed in this review pertaining to current challenges and future perspectives.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Yitzhak Mastai
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
3
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
4
|
Li M, Wang L, Qi W, Liu Y, Lin J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. MICROMACHINES 2021; 12:798. [PMID: 34357208 PMCID: PMC8307108 DOI: 10.3390/mi12070798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
As an important route for disease transmission, bioaerosols have received increasing attention. In the past decades, many efforts were made to facilitate the development of bioaerosol monitoring; however, there are still some important challenges in bioaerosol collection and detection. Thus, recent advances in bioaerosol collection (such as sedimentation, filtration, centrifugation, impaction, impingement, and microfluidics) and detection methods (such as culture, molecular biological assay, and immunological assay) were summarized in this review. Besides, the important challenges and perspectives for bioaerosol biosensing were also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (M.L.); (L.W.); (W.Q.); (Y.L.)
| |
Collapse
|