1
|
Wei L, Lin G, Liu J, Lv N, Jiang W, Dong C, Shang S. Conductive Structural Colored Cotton Fabrics with Nonangle-Dependent Colors and Dynamic Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21985-21995. [PMID: 40145830 DOI: 10.1021/acsami.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Textile dyeing based on structural colors has attracted great attention due to its environmental friendliness and long-lasting color fastness. However, most studies on structural colored fabrics focus on only improving the color and stability of the fabric, neglecting the increasing demand for multifunctional textiles in daily life. Herein, a simple and effective method was used for preparing conductive structural colored cotton fabrics with nonangle-dependent colors and dynamic thermal management. To prepare structural color nanospheres with higher color rendering, PMMA nanospheres were coated with black PDA. The conductive structural colored fabric was obtained by self-assembling PMMA@PDA nanospheres onto MXene-modified cotton fabric through a simple blade coating method. The prepared conductive structural colored textile retains its softness and demonstrates good electrothermal performance and durable color fastness through washing, friction, and durability tests. This work provides a novel approach for creating bifunctional structural colored textiles that are suitable for electrothermal applications.
Collapse
Affiliation(s)
- Luyao Wei
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Guizhen Lin
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ning Lv
- Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China
| | - Wei Jiang
- Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China
| | - Chaohong Dong
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
2
|
Delbreil P, Dhondt S, Kenaan El Rahbani RM, Banquy X, Mitchell JJ, Brambilla D. Current Advances and Material Innovations in the Search for Novel Treatments of Phenylketonuria. Adv Healthc Mater 2024; 13:e2401353. [PMID: 38801163 DOI: 10.1002/adhm.202401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Phenylketonuria (PKU) is a genetically inherited disease caused by a mutation of the gene encoding phenylalanine hydroxylase (PAH) and is the most common inborn error of amino acid metabolism. A deficiency of PAH leads to increased blood and brain levels of phenylalanine (Phe), which may cause permanent neurocognitive symptoms and developmental delays if untreated. Current management strategies for PKU consist of early detection through neonatal screening and implementation of a restrictive diet with minimal amounts of natural protein in combination with Phe-free supplements and low-protein foods to meet nutritional requirements. For milder forms of PKU, oral treatment with synthetic sapropterin (BH4), the cofactor of PAH, may improve metabolic control of Phe and allow for more natural protein to be included in the patient's diet. For more severe forms, daily injections of pegvaliase, a PEGylated variant of phenylalanine ammonia-lyase (PAL), may allow for normalization of blood Phe levels. However, the latter treatment has considerable drawbacks, notably a strong immunogenicity of the exogenous enzyme and the attached polymeric chains. Research for novel therapies of PKU makes use of innovative materials for drug delivery and state-of-the-art protein engineering techniques to develop treatments which are safer, more effective, and potentially permanent.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - Sofie Dhondt
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - John J Mitchell
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Québec, H4A 3J1, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
3
|
Cheng S, Wang F, Zuo S, Zhang F, Wang Q, He P. Simultaneous Detection of Biomarkers in Urine Using a Multicalibration Potentiometric Sensing Array Combined with a Portable Analyzer. Anal Chem 2024. [PMID: 39152903 DOI: 10.1021/acs.analchem.4c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Domestic monitoring devices make real-time and long-term health monitoring possible, allowing people to track their health status regularly. Uric acid (UA), creatinine, and urea in urine are three important biomarkers for various diseases, especially kidney diseases. This work proposed a 10-channel potentiometric sensing array containing a UA electrode group, a creatinine electrode group, a urea electrode group, a pH electrode group, and one pair of reference channels, which could be connected with a portable potentiometric analyzer, realizing the simultaneous detection of UA, creatinine, urea, and pH in urine. The prepared Pt/carbon nanotubes (CNTs)-uricase, creatinine deiminase, Au@urease, and polyaniline were employed as the sensing materials, showing responses to four targets with high sensitivity and selectivity. To improve the accuracy of domestic monitoring, a calibration channel was integrated into each electrode group to calibrate the basic potential of the sensing channels, and the influences of pH and temperature on the responses were investigated through the pH electrode group and an external temperature probe to calibrate the slope and intercept. With the preset of the deduced calibration parameters and computational formula for the four targets in the analyzer in Lab Mode, the concentrations of UA, creatinine, and urea and the pH of the human urine samples were directly displayed on the screen of the analyzer in Practical Mode. The agreement of these results with those obtained from commercial kits and pH meters reveals the high potential of these methods for developing domestic devices to facilitate health monitoring.
Collapse
Affiliation(s)
- Shengqi Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Fan Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Shaohua Zuo
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
4
|
Zhao J, Cai X, Zhang X, Zhang J, Fan J, Ma F, Zhu W, Jia X, Wang S, Meng Z. Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42046-42055. [PMID: 37622170 DOI: 10.1021/acsami.3c06443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at -57 °C due to the double network. The sensor still had a great response to hazardous gases after freezing at -20 °C for 12 h and testing at 0 °C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.
Collapse
Affiliation(s)
- Jiang Zhao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaolu Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojing Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang, Henan Province 471039, China
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Feng Ma
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Zhu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiyu Jia
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shushan Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| |
Collapse
|
5
|
Aptamer-functionalized 2D photonic crystal hydrogels for detection of adenosine. Mikrochim Acta 2022; 189:418. [PMID: 36242658 DOI: 10.1007/s00604-022-05521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/30/2022] [Indexed: 10/17/2022]
Abstract
Aptamer-functionalized two-dimensional photonic crystal (2DPC) hydrogels are reported for the detection of adenosine (AD). As a molecular recognition group, an AD-binding aptamer was covalently attached to 2DPC hydrogels. This aptamer selectively and sensitively binds AD, changing the conformation of the aptamer from a long single-stranded structure (AD-free conformation) to a short hairpin loop structure (AD-bound conformation). The AD-binding-induced changes of aptamer conformation reduced the volume of the 2DPC hydrogels and decreased the interparticle spacing of the 2DPC embedded in the hydrogel network. The particle spacing changes being dependent on AD concentration were determined by measuring 2DPC light diffraction using a simple laser pointer. The 2DPC hydrogel sensor showed a large particle spacing decrease of ~ 110 nm in response to 1 mM AD in phosphate-buffered saline (PBS). The linear range of determination of AD was 0.1 nM to 1 mM and the limit of detection was 0.09 nM. The hydrogel sensor response for real samples was then validated in diluted fetal bovine serum (FBS) and human urine. The average % difference in particle spacing changes measured between diluted FBS and pure PBS was only 3.99%. In diluted human urine, the recoveries for the detection of AD were 95-101% and the relative standard deviations were 4.9-7.8%. The results demonstrate the potential applicability of the hydrogel sensor for real samples. This sensing concept, using the aptamer-functionalized 2DPC hydrogels, allows for a simple, sensitive, selective, and reversible detection of AD. It may enable sensor development for a wide variety of analytes by simply changing the aptamer recognition group.
Collapse
|
6
|
Multi-Factors Cooperatively Actuated Photonic Hydrogel Aptasensors for Facile, Label-Free and Colorimetric Detection of Lysozyme. BIOSENSORS 2022; 12:bios12080662. [PMID: 36005058 PMCID: PMC9406194 DOI: 10.3390/bios12080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Responsive two-dimensional photonic crystal (2DPC) hydrogels have been widely used as smart sensing materials for constructing various optical sensors to accurately detect different target analytes. Herein, we report photonic hydrogel aptasensors based on aptamer-functionalized 2DPC poly(acrylamide-acrylic acid-N-tert-butyl acrylamide) hydrogels for facile, label-free and colorimetric detection of lysozyme in human serum. The constructed photonic hydrogel aptasensors undergo shrinkage upon exposure to lysozyme solution through multi-factors cooperative actuation. Here, the specific binding between the aptamer and lysozyme, and the simultaneous interactions between carboxyl anions and N-tert-butyl groups with lysozyme, increase the cross-linking density of the hydrogel, leading to its shrinkage. The aptasensors’ shrinkage decreases the particle spacing of the 2DPC embedded in the hydrogel network. It can be simply monitored by measuring the Debye diffraction ring of the photonic hydrogel aptasensors using a laser pointer and a ruler without needing sophisticated apparatus. The significant shrinkage of the aptasensors can be observed by the naked eye via the hydrogel size and color change. The aptasensors show good sensitivity with a limit of detection of 1.8 nM, high selectivity and anti-interference for the detection of lysozyme. The photonic hydrogel aptasensors have been successfully used to accurately determine the concentration of lysozyme in human serum. Therefore, novel photonic hydrogel aptasensors can be constructed by designing functional monomers and aptamers that can specifically bind target analytes.
Collapse
|
7
|
Gao F, Bi Z, Wang S, Zhao Z, Dong Y, Li X. An amphiphilic azobenzene derivative as a crosslinker in the construction of smart supramacromolecular hydrogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Singh G, Diksha, xx M, Suman, Shilpy, Devi A, Gupta S, Yadav R, Sehgal R. Benzothiazole tethered triazole based potential antibacterial agent as a selective fluorometric probe for the detection of Al3+ ions and phenylalanine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Jang K, Westbay JH, Asher SA. DNA-Crosslinked 2D Photonic Crystal Hydrogels for Detection of Adenosine Actuated by an Adenosine-Binding Aptamer. ACS Sens 2022; 7:1648-1656. [PMID: 35623053 DOI: 10.1021/acssensors.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a need to develop versatile sensing motifs that can be used to detect a variety of chemical targets in resource-limited settings, for example, at the point of care. While numerous sensing technologies have been developed toward this effort, these technologies can be overly complex and require a skilled technician, extensive sample preparation, or sophisticated instrumentation to use, limiting their generalizability and application in resource-limited settings. Here, we report a novel sensing motif that utilizes DNA-crosslinked two-dimensional photonic crystal (2DPC) hydrogels. These hydrogel sensors contain a DNA aptamer recognition group that binds a target analyte. As proof of concept, we fabricated 2DPC hydrogels using a well-studied adenosine-binding aptamer. This adenosine aptamer is duplexed with a partially complementary strand and forms responsive crosslinks in the hydrogel polymer network. When adenosine is introduced, aptamer-adenosine binding occurs, breaking the DNA crosslinks and causing the hydrogel to swell. This in turn increases the particle spacing of an embedded 2DPC array, shifting the 2DPC Bragg diffraction. Thus, adenosine concentration can be monitored through 2DPC Bragg diffraction measurements. A linear range of 20 μM to 2 mM was observed. The detection limits were calculated to be 13.9 μM in adenosine-binding buffer and 26.7 μM in fetal bovine serum. This reported sensing motif has a readout that is simple and rapid and requires minimal equipment. We hypothesize that this sensing motif is generalizable and that other sensors can be easily fabricated by simply exchanging the aptamer that serves as a molecular recognition group.
Collapse
Affiliation(s)
- Kyeongwoo Jang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James H. Westbay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
|
11
|
Zhang Y, Qi Y, Wang R, Cao T, Ma W, Zhang S. Nonintrusively Adjusting Structural Colors of Sealed Two-Dimensional Photonic Crystals: Immediate Transformation between Transparency and Intense Iridescence and Their Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13861-13871. [PMID: 33689271 DOI: 10.1021/acsami.1c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Responsive photonic crystals (PCs), which can adjust structural colors in response to external stimuli, show great potential applications in displays, sensors, wearable electronics, encryption, and anticounterfeiting. In contrast, conventional structure-intrusive adjustment manners that external stimuli directly interact with the ordered arrays may lead to structural damage or longer response time. Here, a noninvasive adjustment of the structural colors of two-dimensional (2D) PCs (2D-PCs) is explored based upon diffraction theory. Sealed 2D-PCs and 2D inverse opal photonic crystal (IOPC) flexible devices are prepared. They are highly transparent in air but immediately exhibit intense viewing angle-dependent structural colors after being dipped in water. The mechanism of transparent-iridescent immediate transformation is explained by Bragg's law. The design mechanism is examined by numerical simulation and spectral shifts in different external media. We demonstrate its applications in the fields of information encryption and anticounterfeiting by using the transparent-iridescent immediate transformation of sealed 2D-PC patterns and 2D IOPC free-standing films sealed on the product surface. Because of the strong contrast between transparency and intense iridescence, reversible and immediate transformation, and durability, sealed 2D-PCs and 2D IOPC flexible devices designed by the noninvasive adjustment strategy will lead to a variety of new applications in displays, sensors, wearable electronics, encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Yeguang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Rongzi Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116023, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|