1
|
Liu L, Zheng SJ, Chen H, Cai J, Zang SQ. Tandem Nitrate-to-Ammonia Conversion on Atomically Precise Silver Nanocluster/MXene Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202316910. [PMID: 38179795 DOI: 10.1002/anie.202316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Electrocatalytic reduction of nitrate (NO3 RR) to synthesize ammonia (NH3 ) provides a competitive manner for carbon neutrality and decentralized NH3 synthesis. Atomically precise nanoclusters, as an advantageous platform for investigating the NO3 RR mechanisms and actual active sites, remain largely underexplored due to the poor stability. Herein, we report a (NH4 )9 [Ag9 (mba)9 ] nanoclusters (Ag9 NCs) loaded on Ti3 C2 MXene (Ag9 /MXene) for highly efficient NO3 RR performance towards ambient NH3 synthesis with improved stability in neutral medium. The composite structure of MXene and Ag9 NCs enables a tandem catalysis process for nitrate reduction, significantly increasing the selectivity and FE of NH3 . Besides, compared with individual Ag9 NCs, Ag9 /MXene has better stability with the current density performed no decay after 108 hours of reaction. This work provides a strategy for improving the catalytic activity and stability of atomically precise metal NCs, expanding the mechanism research and application of metal NCs.
Collapse
Affiliation(s)
- Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Gultom NS, Zhou YC, Kuo DH. A facile and efficient method for preparing La-doped Co 3O 4 by electrodeposition as an efficient air cathode in rechargeable zinc-air batteries: Role of oxygen vacancies. J Colloid Interface Sci 2024; 655:394-406. [PMID: 37948813 DOI: 10.1016/j.jcis.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
A rechargeable zinc-air battery (ZAB) is a promising candidate for simple and low-cost energy storage systems. However, preparing the air cathode material using a binder-free method and a bifunctional catalyst is still the major challenge in the field. Herein, we demonstrate the effect of different La contents doped into the Co3O4 spinel structure in the presence of oxygen vacancies prepared by a facile and efficient electrodeposition technique on the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and ZAB performance. Incorporating the La dopant into the Co3O4 improves the OER and ORR performances and thus enhances the specific capacity and energy density of ZAB. The optimal La-doping amount in the CoLa-1 catalyst demonstrates high feasibility for practical application with a capacity of 780 ± 24 mAh/g and an energy density of 901 ± 39 mW g-1, significantly outperforming the pristine Co3O4. The stability and cycling tests reveal good durability performance after 300 cycles and 100 h of testing without degradation, which is much more stable than the benchmark Pt/C + RuO2 electrode. The performance enhancement is attributed to the synergetic effect of high active surface area, low charge transfer resistance, and optimal oxygen vacancies. A kinetic micromechanism is proposed to illustrate the importance of the oxygen vacancy amount in trapping oxygen gas and maximizing the number of ORR and OER reactions.
Collapse
Affiliation(s)
- Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Yi-Cheng Zhou
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan; Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan.
| |
Collapse
|
3
|
Hefnawy MA, Nafady A, Mohamed SK, Medany SS. Facile green synthesis of Ag/carbon nanotubes composite for efficient water splitting applications. SYNTHETIC METALS 2023; 294:117310. [DOI: 10.1016/j.synthmet.2023.117310] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
4
|
Guo YX, Yang M, Liu Z, Yang XY, Xiao Y, Li XY, Ye CF, Li Y, Liu JP, Su BL, Chen LH, Wang YL. Boosting highly active defect MoV sites for amorphous molybdenum sulfide from catalyst-substrate effect toward efficient hydrogen evolution. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Gultom NS, Li CH, Kuo DH, Abdullah H. Single-Step Synthesis of Fe-Doped Ni 3S 2/FeS 2 Nanocomposites for Highly Efficient Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39917-39926. [PMID: 36000887 DOI: 10.1021/acsami.2c08246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the sluggish kinetic reaction, the electrolytic oxygen evolution reaction (OER) is one of the obstacles in driving overall water splitting for green hydrogen production. In this study, we demonstrate a strategy to improve the OER performance of Ni3S2. The effect of addition of different FeCl2 contents during the hydrothermal process on the OER activity is systematically evaluated. We found that all samples upon the addition of FeCl2 produced Fe-doped Ni3S2 and FeS2 to form a nanocomposite. Their OER performances strongly depend on the amount of FeCl2, where the NSF-0.25 catalyst with 0.25 mmol FeCl2 added during the hydrothermal synthesis shows the best OER performance. Its overpotential was 230 mV versus RHE and it achieves a high current density of 100 mA·cm-2, which was much lower than that of pristine Ni3S2 (320 mV) or RuO2 (370 mV) as the benchmark OER catalyst. The postcharacterizations reveal that NSF-0.25 has gone through an in situ phase transformation into an Fe-NiOOH phase during the OER test. This study presents a simple method and a low-cost material to improve the OER performance with in situ formation of oxyhydroxide.
Collapse
Affiliation(s)
- Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Chien-Hui Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
6
|
Liu H, Zhang Y, Li Y, Yang M, Li Y, Jin Z. Mo‐N bonds effect between MoSx Coupling with CoN for efficient photocatalytic hydrogen production. ChemCatChem 2022. [DOI: 10.1002/cctc.202200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hai Liu
- North Minzu University School of Chemistry and Chemical Engineering CHINA
| | - Yueyang Zhang
- North Minzu University School of Chemistry and Chemical Engineering CHINA
| | - Youji Li
- Jishou University School of Chemistry and Chemical Engineering CHINA
| | - Mengxue Yang
- North Minzu University School of Chemistry and Chemical Engineering CHINA
| | - Yanbin Li
- North Minzu University School of Chemistry and Chemical Engineering CHINA
| | - Zhiliang Jin
- North Minzu University School of Chemistry and Chemical Engineering No:204 Wenchang Road 750021 Yinchuan CHINA
| |
Collapse
|
7
|
Preparation and in vivo bacteriostatic application of PPDO-coated Ag loading TiO 2 nanoparticles. Sci Rep 2022; 12:10585. [PMID: 35732700 PMCID: PMC9217793 DOI: 10.1038/s41598-022-14814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections limit the clinical application of implants therapy; hence, exploiting strategies to prevent biomaterial-associated infections has become important. Therefore, in this study, a series of poly (p-dioxanone) (PPDO)-coated Ag loading TiO2 nanoparticles (Ag@TiO2-PPDO) was synthesized to be applied as bacteriostatic coating materials that could be easily dispersed in organic solvent and coated onto implantable devices via temperate methods such as electrospraying. The lattice parameters of TiO2 were a = 0.504 nm, b = c = 1.05 nm, alpha = beta = gamma = 90 degree and the size of crystallite was about 13 nm, indicating that part of Ag has been embedded into crystal defects of TiO2. Both XRD and TEM determinations indicated the successful grating of PPDO on the surface of Ag@TiO2. Among Ag@TiO2 nanoparticles with various Ag loading quantities, 12% Ag@TiO2 nanoparticles exhibited relatively higher grafting efficiency and Ag contents on the surface of grafted composites. In addition, 12% Ag@TiO2-PPDO exhibited the best bacteriostatic effect in vitro owing to its higher grafted efficiency and relatively short length of PPDO segments. Subsequently, Ag@TiO2-PPDO was coated on the surface of a poly lactic-co-glycolic acid (PLGA) electrospun membrane via the electrospraying method. Finally, the in vivo bacteriostatic effect of 12% Ag@TiO2-PPDO coating was verified by implanting 12% Ag@TiO2-PPDO-coated PLGA membrane into a rat subcutaneously combined with an injection of Staphylococcus aureus at implanting sites.
Collapse
|
8
|
Jin Z, Li T, Wang K, Guo X. Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 609:212-223. [PMID: 34896825 DOI: 10.1016/j.jcis.2021.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Simple high-temperature calcination and hydrothermal methods were followed to synthesize CeO2 and Mo-S, respectively. The efficient photocatalytic hydrogen evolution activity exhibited by the composite catalysts can be attributed to the edge active sites in Mo-S. The Mo-O bonds formed between CeO2 and Mo-S could further accelerate the processes of separation and migration of electrons between the catalyst interfaces. The hybrid catalyst 10%-CeO2/Mo-S exhibiting the best hydrogen generation ability (4.3 mmol h-1g-1) was obtained by optimizing the content of CeO2 in CeO2/Mo-S. Analysis of the PL spectral profile and photocurrent response recorded for the system revealed that 10%-COMS exhibited excellent photogenerated carrier separation ability. Analysis of the LSV and EIS curves revealed that 10%-COMS exhibited the optimal hydrogen production potential. The charge migration resistance provided by the systems was lower than the charge migration resistance provided by CeO2 and Mo-S. The synergism between the S-scheme heterojunctions and the Mo-O bonds helped accelerate the separation and migration of photo-induced carriers at the catalyst interfaces. The introduction of covalent bonds in the S-scheme heterojunctions and the results presented herein can potentially help develop a new method to realize photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Teng Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
9
|
Li T, Jin Z. Unique ternary Ni-MOF-74/Ni 2P/MoS x composite for efficient photocatalytic hydrogen production: Role of Ni 2P for accelerating separation of photogenerated carriers. J Colloid Interface Sci 2021; 605:385-397. [PMID: 34332412 DOI: 10.1016/j.jcis.2021.07.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 01/18/2023]
Abstract
A reasonable introduction of MOFs-derived Ni2P with high dispersity is a valid way to reduce the recombination rate of photogenerated electron-holes, thus for more effective visible-light-driven water splitting. In this study, Ni-MOF-74/Ni2P precursor was obtained by low-temperature phosphating method. A ternary heterojunction Ni-MOF-74/Ni2P/MoSx with a unique structure is obtained by a solution-based mixing method. The unique structure of Ni-MOF-74/Ni2P provides advantages for MoSx load. The UV-visible diffuse reflectance spectroscopy proves that the introduction of Ni2P improves the utilization of visible light by the composite catalyst 10%-NPMS and promotes more electrons generation, thereby improving photocatalytic hydrogen production activity. It is proved that the introduced Ni2P can accelerate the separation of photogenerated carriers by characterization (PL, EIS, LSV, etc.) analyses. The composite catalyst 10%-NPMS with the best hydrogen production activity was obtained by adjusting the ratio between Ni-MOF-74/Ni2P and MoSx. The photocatalytic hydrogen evolution of the composite catalyst 10%-NPMS (286.16 μmol) is 28.30, 2.78, 3.79 and 2.41 times that of pure Ni-MOF-74, Ni2P, MoSx and binary 10%-Ni-MOF-74/MoSx within 5 h, respectively. And the hybrid 10%-Ni-MOF-74/Ni2P/MoSx exhibits excellent photocatalytic hydrogen evolution performance and good stability. This research will provide a new strategy for synthesizing unique ternary composite materials by using metal organic framework materials as precursors.
Collapse
Affiliation(s)
- Teng Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
10
|
Sinulingga K, Sirait M, Siregar N, Abdullah H. Synthesis and characterizations of natural limestone-derived nano-hydroxyapatite (HAp): a comparison study of different metals doped HAps on antibacterial activity. RSC Adv 2021; 11:15896-15904. [PMID: 35481166 PMCID: PMC9030672 DOI: 10.1039/d1ra00308a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Earth-abundant mineral limestone obtained from North Sumatera, Indonesia, has been utilized to synthesize nano-hydroxyapatite (HAp). Although HAp is biocompatible to the human bone, its antibacterial activity is still very low. Herein, different metal ions (i.e., Ag, Cu, Zn, and Mg) were doped into HAp to improve the antibacterial activity. The as-synthesized HAp was characterized by X-ray ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy disperse spectroscopy (EDS), Fourier transmission infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The antibacterial test showed that the performance of HAp to inactivate bacterial growth was significantly improved after incorporating the metal ion dopants into HAp. Ag-HAp exhibited the highest activity toward E. coli and S. aureus with an antibacterial rate of 99.9 ± 0.1%, followed by Zn-HAp, Cu-HAp, and Mg-HAp. Antibacterial activities of different metal ion doped HAp towards (a) E. coli and (b) S. aureus bacteria.![]()
Collapse
Affiliation(s)
- Karya Sinulingga
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Makmur Sirait
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Nurdin Siregar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan 20221 Indonesia
| | - Hairus Abdullah
- Department of Industrial Engineering, Universitas Prima Indonesia Medan Indonesia
| |
Collapse
|
11
|
Abdullah H, Ginting RT, Sembiring AC, Gultom NS, Shuwanto H, Kuo DH. One-pot preparation of multicomponent photocatalyst with (Zn, Co, Ni)(O, S)/Ga2O3 nanocomposites to significantly enhance hydrogen production. NEW J CHEM 2021. [DOI: 10.1039/d1nj02980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To enhance the production of hydrogen, multicomponent photocatalyst (Zn, Co, Ni)(O, S)/Ga2O3 nanocomposites were synthesized and optimized with different amounts of Ga precursor in a relatively low-temperature process.
Collapse
Affiliation(s)
- Hairus Abdullah
- Department of Industrial Engineering, Universitas Prima Indonesia, Medan, Indonesia
| | - Riski Titian Ginting
- Department of Electrical Engineering, Universitas Prima Indonesia, Medan, Indonesia
| | | | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Hardy Shuwanto
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
12
|
Li T, Yan T, Jin Z. Design and preparation of a ternary MoC-QDs/C/Mo–S heterojunction for enhanced eosin Y-sensitized photocatalytic hydrogen evolution. NEW J CHEM 2021. [DOI: 10.1039/d1nj01902c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon film contributes to the separation of photogenerated carriers in the process of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Teng Li
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University
| | - Teng Yan
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University
| |
Collapse
|