1
|
Buijs W. A Molecular Modeling Study on the Propagation in Free Radical Chain Oxidation of (B)PEI. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:313. [PMID: 39997876 PMCID: PMC11858157 DOI: 10.3390/nano15040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Air oxidation of PEI is a Free Radical Chain Autoxidation process, described as a process following the Basic Autoxidation Scheme with Initiation, Propagation and Termination as discriminating steps. Molecular Modeling was able to identify the most important propagation reactions. HO2(d) is the most likely candidate as the main oxidation chain carrying radical. α-H-abstraction from PEI α-amino hydroperoxides by HO2(d), leading to amide PEI repeat units and eventually to HO2(d) again, is the first step in Propagation. Apart from well-know propagation reactions, the reaction of PEI α-amino CH(d) radicals with H2O2 is of major importance, too, with an estimated contribution of ~50% to Propagation. Furthermore, it provides an explanation for the formation of NH3 and various imine PEI repeat units. PEI α-amino alkoxy radicals might contribute to some extent to Propagation and can lead to chain breaks in PEI and the formation of CO2. Amide and imine PEI repeat units contribute to ~90% of the fully oxidized PEI.
Collapse
Affiliation(s)
- Wim Buijs
- Independent Researcher, Lochlehn 237, 6105 Leutasch, Austria
| |
Collapse
|
2
|
Robertson M, Qian J, Qiang Z. Polymer Sorbent Design for the Direct Air Capture of CO 2. ACS APPLIED POLYMER MATERIALS 2024; 6:14169-14189. [PMID: 39697843 PMCID: PMC11650649 DOI: 10.1021/acsapm.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 12/20/2024]
Abstract
Anthropogenic activities have resulted in enormous increases in atmospheric CO2 concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO2 capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO2 concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO2, in which polymers have played an integral role. This work provides insights into the development of polymer sorbents for DAC of CO2, specifically from the perspective of material design principles. We discuss how physical properties and chemical identities of amine-containing polymers can impact their ability to uptake CO2, as well as be efficiently regenerated. Additionally, polymers which use ionic interactions to react with CO2 molecules, such as poly(ionic liquids), are also common DAC sorbent materials. Finally, a perspective is provided on the future research and technology opportunities of developing polymer-derived sorbents for DAC.
Collapse
Affiliation(s)
- Mark Robertson
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jin Qian
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
3
|
Thakkar HV, Ruba AJ, Matteson JA, Dugas MP, Singh RP. Accelerated Testing of PEI-Silica Sorbent Pellets for Direct Air Capture. ACS OMEGA 2024; 9:45970-45982. [PMID: 39583703 PMCID: PMC11579769 DOI: 10.1021/acsomega.4c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Amine-based sorbents have shown exceptional CO2 uptake for direct air capture (DAC). However, amine degradation is a major issue for this class of materials, hindering their deployment for large-scale DAC. In this study, a comprehensive evaluation of polyethylenimine (PEI) sorbents was conducted to understand their degradation under process-relevant environments for the DAC of CO2. A solvent-minimized silica-supported PEI-sorbent powder synthesis method using centrifugal mixing was developed. Unlike traditional solvent-assisted impregnated sorbent synthesis methods, the centrifugal mixing method enabled a 94% reduction in volatile and toxic organic solvent use in pelletized sorbent synthesis. The pelletized sorbents exhibited CO2 adsorption capacities consistent with traditional fabrication methods for PEI-based solid sorbents (about 1 mmol/g). The pelletized sorbent degradation behavior was evaluated at three different regeneration temperatures (80, 100, and 120 °C) under nitrogen (N2), ambient air (21% O2), and saturated dry and wet (75% relative humidity (RH)) CO2 environments using fixed-bed breakthrough (BT) experiments. Additionally, accelerated testing (AT) protocols that mimic industrial DAC conditions were developed to assess the long-term stability of the PEI-silica pellets. Our results indicate that the sorbent degrades rapidly (ca. 94% within 24 h) at 120 °C in ambient air (21% O2), demonstrating the detrimental impact of oxygen when compared to an O2-free environment. AT performed for 100 h (equivalent to 33, 100, and 100 cycles) continuously at 80, 100, and 120 °C reveals that dry CO2-induced degradation of the PEI-silica sorbent pellets is 30-40% and 40-50% more than the degradation measured in wet CO2 and inert (pure N2) environments.
Collapse
Affiliation(s)
| | | | - John A. Matteson
- Material Synthesis and Integrated
Devices (MPA-11) Group, Material, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael P. Dugas
- Material Synthesis and Integrated
Devices (MPA-11) Group, Material, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rajinder P. Singh
- Material Synthesis and Integrated
Devices (MPA-11) Group, Material, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Wick-Joliat R, Weisshar FB, Gorbar M, Meier DM, Penner D. CO 2 Capture with Polyethylenimine Supported on 3D-Printed Porous SiO 2 Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2913. [PMID: 38930282 PMCID: PMC11205667 DOI: 10.3390/ma17122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Amines supported on porous solid materials have a high CO2 adsorption capacity and low regeneration temperature. However, the high amine load on such substrates and the substrate itself may lead to substantial pressure drop across the reactor. Herein, we compare the CO2 adsorption capacity and pressure drop of fumed silica powder to 3D-printed monolithic fumed silica structures, both functionalized by polyethylenimine (PEI), and find a drastically reduced pressure drop for 3D-printed substrates (0.01 bar vs. 0.76 bar) in the sorption bed with equal CO2 adsorption capacity. Furthermore, the effect of 3D-printing nozzle diameter and PEI loading on the adsorption capacity are investigated and the highest capacities (2.0 mmol/g at 25 °C with 5000 ppm CO2) are achieved with 0.4 mm nozzle size and 34 wt% PEI loading. These high capacities are achieved since the 3D printing and subsequent sintering (700 °C) of monolithic samples does not compromise the surface area of the fumed silica. Finally, the comparison between 3D-printed monoliths and extruded granulate of varying diameter reveals that the ordered channel system of 3D-printed structures is superior to randomly oriented granulate in terms of CO2 adsorption capacity.
Collapse
Affiliation(s)
| | | | | | | | - Dirk Penner
- IMPE Institute of Materials and Process Engineering, School of Engineering, ZHAW Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland; (R.W.-J.); (F.B.W.); (M.G.); (D.M.M.)
| |
Collapse
|
5
|
Priyadarshini P, Rim G, Rosu C, Song M, Jones CW. Direct Air Capture of CO 2 Using Amine/Alumina Sorbents at Cold Temperature. ACS ENVIRONMENTAL AU 2023; 3:295-307. [PMID: 37743951 PMCID: PMC10515709 DOI: 10.1021/acsenvironau.3c00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 09/26/2023]
Abstract
Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents' performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (-20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g-1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at -20 °C under dry conditions (1.6 and 1.1 mmol g-1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g-1) across 10 cycles of adsorption-desorption (adsorption at -20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at -20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.
Collapse
Affiliation(s)
- Pranjali Priyadarshini
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Guanhe Rim
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Cornelia Rosu
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
6
|
Zafari R, Mendonça FG, Tom Baker R, Fauteux-Lefebvre C. Efficient SO2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Kulkarni V, Panda D, Singh SK. Direct Air Capture of CO 2 over Amine-Modified Hierarchical Silica. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Vaishnavi Kulkarni
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| | - Debashis Panda
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| | - Sanjay Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552Madhya Pradesh, India
| |
Collapse
|
8
|
Hack J, Maeda N, Meier DM. Review on CO 2 Capture Using Amine-Functionalized Materials. ACS OMEGA 2022; 7:39520-39530. [PMID: 36385890 PMCID: PMC9647976 DOI: 10.1021/acsomega.2c03385] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CO2 capture from industry sectors or directly from the atmosphere is drawing much attention on a global scale because of the drastic changes in the climate and ecosystem which pose a potential threat to human health and life on Earth. In the past decades, CO2 capture technology relied on classical liquid amine scrubbing. Due to its high energy consumption and corrosive property, CO2 capture using solid materials has recently come under the spotlight. A variety of porous solid materials were reported such as zeolites and metal-organic frameworks. However, amine-functionalized porous materials outperform all others in terms of CO2 adsorption capacity and regeneration efficiency. This review provides a brief overview of CO2 capture by various amines and mechanistic aspects for newcomers entering into this field. This review also covers a state-of-the-art regeneration method, visible/UV light-triggered CO2 desorption at room temperature. In the last section, the current issues and future perspectives are summarized.
Collapse
|
9
|
Low MY(A, Barton L, Pini R, Petit C. Analytical review of the current state of knowledge of adsorption materials and processes for direct air capture. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ma X, Xu W, Su R, Shao L, Zeng Z, Li L, Wang H. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
12
|
|
13
|
Sequential polymer infusion into solid substrates (SPISS): Impact of processing on sorbent CO2 adsorption properties. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Anyanwu JT, Wang Y, Yang RT. Tunable amine loading of amine grafted mesoporous silica grafted at room temperature: Applications for CO2 capture. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Synthesis, Characterization and Application of Amine-Functionalized Hierarchically Micro-Mesoporous Silicon Composites for CO 2 Capture in Flue Gas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113429. [PMID: 35684366 PMCID: PMC9182193 DOI: 10.3390/molecules27113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
An efficient CO2 adsorbent with a hierarchically micro-mesoporous structure and a large number of amine groups was fabricated by a two-step synthesis technique. Its structural properties, surface groups, thermal stability and CO2 adsorption performance were fully investigated. The analysis results show that the prepared CO2 adsorbent has a specific hierarchically micro-mesoporous structure and highly uniformly dispersed amine groups that are favorable for the adsorption of CO2. At the same time, the CO2 adsorption capacity of the prepared adsorbent can reach a maximum of 3.32 mmol-CO2/g-adsorbent in the actual flue gas temperature range of 303-343 K. In addition, the kinetic analysis results indicate that both the adsorption process and the desorption process have rapid adsorption/desorption rates. Finally, the fitting of the CO2 adsorption/desorption experimental data by Avrami's fractional kinetic model shows that the CO2 adsorption rate is mainly controlled by the intra-particle diffusion rate, and the temperature has little effect on the adsorption rate.
Collapse
|
16
|
Chen W, Wu Z, Wang Z, Chen C, Zhang Z. Preparation of a reusable and pore size controllable porous polymer monolith and its catalysis of biodiesel synthesis. RSC Adv 2022; 12:12363-12370. [PMID: 35480381 PMCID: PMC9036607 DOI: 10.1039/d2ra01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
A sulfonated porous polymer monolith (PPM-SO3H) has been prepared via the polymerisation of styrene (St) and divinyl benzene (DVB) with organic microspheres as pore-forming agents, followed by sulfonation with concentrated sulfuric acid. It was characterized by acid-base titration in order to determine its acid density, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG). The PPM-SO3H showed an acid density of 1.89 mmol g-1 and pore cavities with an average diameter of 870 nm. The catalytic activity of PPM-SO3H in practical biodiesel synthesis from waste fatty acids was investigated and the main reaction parameters were optimized through orthogonal experiment. The best reaction conditions obtained for the optimization of methanol to oil ratio, catalyst concentration, reaction temperature and reaction time were 1 : 1, 20%, 80 °C and 8 h, respectively. PPM-SO3H showed excellent catalytic activity. In biodiesel synthesis, the esterification rate of PPM-SO3H is 96.9%, which is much higher than that of commercial poly(sodium-p-styrenesulfonate) (esterification rate 29.0%). The PPM-SO3H can be reused several times without significant loss of catalytic activity; the esterification rate was still 90.8% after 6 cycles. The pore size of this porous polymer monolith can be controlled. The dimension and shape of this porous polymer monolith were also adjustable by choosing a suitable polymerisation container.
Collapse
Affiliation(s)
- Weiqing Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhaoji Wu
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Changjiu Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhigang Zhang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| |
Collapse
|
17
|
Wu X, Krishnamoorti R, Bollini P. Technological Options for Direct Air Capture: A Comparative Process Engineering Review. Annu Rev Chem Biomol Eng 2022; 13:279-300. [PMID: 35363505 DOI: 10.1146/annurev-chembioeng-102121-065047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The direct capture of CO2 from ambient air presents a means of decelerating the growth of global atmospheric CO2 concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO2 that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaowei Wu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77004, USA; ,
| | - Ramanan Krishnamoorti
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77004, USA; ,
| | - Praveen Bollini
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77004, USA; ,
| |
Collapse
|
18
|
Branched versus Linear Structure: Lowering the CO2 Desorption Temperature of Polyethylenimine-Functionalized Silica Adsorbents. ENERGIES 2022. [DOI: 10.3390/en15031075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lowering the regeneration temperature for solid CO2-capture materials is one of the critical tasks for economizing CO2-capturing processes. Based on reported pKa values and nucleophilicity, we compared two different polyethylenimines (PEIs): branched PEI (BPEI) and linear PEI (LPEI). LPEI outperformed BPEI in terms of adsorption and desorption properties. Because LPEI is a solid below 73–75 °C, even a high loading amount of LPEI can effectively adsorb CO2 without diffusive barriers. Temperature-programmed desorption (TPD) demonstrated that the desorption peak top dropped to 50.8 °C for LPEI, compared to 78.0 °C for BPEI. We also revisited the classical adsorption model of CO2 on secondary amines by using in situ modulation excitation IR spectroscopy, and proposed a new adsorption configuration, R1(R2)-NCOOH. Even though LPEI is more expensive than BPEI, considering the long-term operation of a CO2-capturing system, the low regeneration temperature makes LPEI attractive for industrial applications.
Collapse
|
19
|
|
20
|
Zhang J, Zuo J, Liu Y, Zhang J, Fu W, Zhang J, Miao S, Wei C. Universality of mesoporous coal gasification slag for reinforcement and deodorization in four common polymers. NANOTECHNOLOGY 2021; 33:095703. [PMID: 34808606 DOI: 10.1088/1361-6528/ac3bf0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Mesoporous adsorbents and polymer deodorants are difficult to implement on a large scale because of their complicated preparation methods. Herein, a mesoporous adsorbent (CGSA) with a specific surface area of 564 m2g-1and a pore volume of 0.807 cm3g-1was prepared from solid waste coal gasification slag using a simple acid leaching process. The adsorption thermodynamics and adsorption kinetics results verified that the adsorption mechanism of propane on CGSA was mainly physisorption. Then the universality of CGSA in different polymers was investigated by introducing CGSA and its commercialized counterparts (CaCO3, and zeolite) into four common polymers. When the filler content was 30 wt%, the average reinforcement effect of CGSA on the tensile, flexural, and impact strengths of the four polymers was 46.68%, 83.62%, and 211.90% higher than that of CaCO3, respectively. Gas chromatography results also showed that CGSA significantly decreased total volatile organic compound emissions from the composites, and its optimal deodorization performance reached 69.58%, 81.33%, and 91.09% for different polymers, respectively, far exceeding that of zeolite. Therefore, this study showed that low-cost, high-performance, and multifunctional mesoporous polymer fillers with excellent universality can be manufactured from solid contaminants.
Collapse
Affiliation(s)
- Jiupeng Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Yang Liu
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Junyu Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Wenjing Fu
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Jinyi Zhang
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Shiding Miao
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| | - Cundi Wei
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
| |
Collapse
|
21
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Abstract
This introduction to the Faraday Discussion on carbon dioxide utilization (CDU) provides a framework to lay out the need for CDU, the opportunities, boundary conditions, potential pitfalls, and critical needs to advance the required technologies in the time needed. CDU as a mainstream climate-relevant solution is gaining rapid traction as measured by the increase in the number of related publications, the investment activity, and the political action taken in various countries.
Collapse
Affiliation(s)
- Volker Sick
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Guo M, Wu H, Lv L, Meng H, Yun J, Jin J, Mi J. A Highly Efficient and Stable Composite of Polyacrylate and Metal-Organic Framework Prepared by Interface Engineering for Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21775-21785. [PMID: 33908751 DOI: 10.1021/acsami.1c03661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a kilogram-scale experiment for assessing the prospects of a novel composite material of metal-organic framework (MOF) and polyacrylates (PA), namely NbOFFIVE-1-Ni@PA, for trace CO2 capture. Through the interfacial enrichment of metal ions and organic ligands as well as heterogeneous crystallization, the sizes of microporous NbOFFIVE-1-Ni crystals are downsized to 200-400 nm and uniformly anchored on the macroporous surface of PA via interfacial coordination, forming a unique dual-framework structure. Specifically, the NbOFFIVE-1-Ni@PA composite with a loading of 45.8 wt % NbOFFIVE-1-Ni yields a superior CO2 uptake (ca. 1.44 mol·kg-1) compared to the pristine NbOFFIVE-1-Ni (ca. 1.30 mol·kg-1) at 400 ppm and 298 K, indicating that the adsorption efficiency of NbOFFIVE-1-Ni has been raised by 2.42 times. Meanwhile, the time cost for realizing a complete adsorption/desorption cycle in a fluidized bed has been shortened to 25 min, and the working capacity (ca. 0.84 mol·kg-1) declines only by 1.3% after 2000 cycles. The device is capable of harvesting 2.1 kg of CO2 per kilogram of composite daily from simulated air with 50% relatively humidity (RH). To the best of our knowledge, the excellent adsorption/desorption performances of NbOFFIVE-1-Ni@PA position it as the most advantageous and practically applicable candidate for trace CO2 capture.
Collapse
Affiliation(s)
- Mengzhi Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hao Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Hong Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Jimmy Yun
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junsu Jin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Anyanwu JT, Wang Y, Yang RT. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO 2 Capture and Natural Gas Desulfurization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John-Timothy Anyanwu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiren Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|