1
|
Hosaka M, Ichikawa H, Sajiki S, Kawamura T, Kawai T. Uniform, convex structuring of polymeric colloids via site-selected swelling. J Colloid Interface Sci 2024; 659:542-549. [PMID: 38194825 DOI: 10.1016/j.jcis.2023.12.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Non-spherical, polymeric colloids serve as building blocks for advanced functional materials. We propose a novel method to produce morphologically controlled, non-spherical particles by generating site-selected, convex structures on polystyrene (PS) particles. It consists of two simple procedures: a monolayer of PS particles is illuminated with UV light and is subsequently immersed in a fluorinated solvent (HFIP). UV irradiation generates site-selected, oxidized domains on PS particles with a different solvent affinity than unoxidized PS, and HFIP immersion preferentially swells the oxidized domains. Such swelling gives rise to site-selected, convex structures on PS particles. By adjusting UV irradiation conditions, including incident and azimuth angles, the oxidized sites, i.e., the swelled portions, can be accurately situated, allowing us to produce various convex shapes, including chiral shapes at desired positions on PS particles.
Collapse
Affiliation(s)
- Marika Hosaka
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Hiroto Ichikawa
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Shunta Sajiki
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Takumi Kawamura
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, Japan.
| |
Collapse
|
2
|
Chang KJ, Chen HR, Hung CH, Hung PS, Tseng HF, Lin YL, Hsu HH, Kao TH, Wu PW, Liau I, Chen JT. Highly Ordered Polymer Nanostructures via Solvent On-Film Annealing for Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:801-809. [PMID: 34951309 DOI: 10.1021/acs.langmuir.1c02818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been a useful sensing technique, in which inelastic light scattering can be significantly enhanced by absorbing molecules onto rough metal surfaces or nanoparticles. Although many methods have been developed to prepare SERS substrates, it is still highly desirable and challenging to design SERS substrates, especially with highly ordered and controlled three-dimensional (3D) structures. In this work, we develop novel SERS substrates with regular volcano-shaped polymer structures using the versatile solvent on-film annealing method. Polystyrene (PS) nanospheres are first synthesized by surfactant-free emulsion polymerization and assembled on poly(methyl methacrylate) (PMMA) films. After annealing in acetic acid vapors, PMMA chains are selectively swollen and wet the surfaces of the PS nanospheres. By selectively removing the PS nanospheres using cyclohexane, volcano-shaped PMMA films can be obtained. Compared with flat PMMA films with water contact angles of ∼74°, volcano-shaped PMMA films exhibit higher water contact angles of ∼110° due to the sharp features and rough surfaces. The volcano-shaped PMMA films are then coated with gold nanoparticles (AuNPs) as SERS substrates. Using rhodamine 6G as the probe molecules, the SERS results show that the Raman signals of the volcano-shaped PMMA/AuNP hybrid substrates are much higher than those of the pristine PMMA films and PMMA films with AuNPs. For the volcano-shaped PMMA/AuNP hybrid substrates using 400 nm PS nanospheres, a high enhancement factor (EF) value of ∼1.12 × 105 with a detection limit of 10-8 M is obtained in a short integration time of 1 s. A linear calibration line with an R2 value of 0.918 is also established, demonstrating the ability to determine the concentrations of the analytes. This work offers significant insight into developing novel SERS substrates, which is crucial for improving the detection limits of analytes.
Collapse
Affiliation(s)
- Kai-Jie Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Huan-Ru Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chiang-Hung Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pei-Sung Hung
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiao-Fan Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Liang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsun-Hao Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tzu-Hsun Kao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ian Liau
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
3
|
Liu H, Gong L, Lu S, Wang H, Fan W, Yang C. Three core-shell polymersomes for targeted doxorubicin delivery: Sustained and acidic release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|