1
|
Xiao X, Yao F, Huang M, Wei J, Wang J. Electrothermal-Assisted Photothermal Lubrication Surfaces for Continuous Anti-Icing/Deicing in Multiple Low-Temperature Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39088451 DOI: 10.1021/acs.langmuir.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Solving the problem of ice accumulation on solid surfaces is of great significance to the economic development of the country and the safety of people's lives. In this work, a coating with multifunctional photothermal/electrothermal solid-state lubrication (PEL) for anti-icing/deicing was prepared in layers based on the intrinsic properties of silicone oil and paraffin wax in combination with conductive graphite and multiwalled carbon nanotubes. Silicone oils and paraffins are used as lubricating media giving the coating excellent lubricity, which results in a water sliding angle (SA) of only 12° on the PEL surface. Meanwhile, PEL shows favorable static and dynamic ice resistance at low temperatures; at -10 °C, the freezing time of water droplets on the PEL surface is extended by at least 4 times compared to the bare substrate. Furthermore, PEL also offers highly efficient photothermal and electrothermal deicing performance, which can effectively remove the accumulated ice at a light intensity of 0.6 kW/m2 or an EPD of 0.1 W/cm2. Meanwhile, the synergistic deicing mechanism of photothermal and electrothermal was verified at -20 °C. Interestingly, the coating shows heat-assisted healing ability due to the phase change characteristic of paraffin wax, which allows the coating to regain lubricating properties after mechanical abrasion. Therefore, this work provides a reliable way for the design of stable all-weather anti-icing/deicing strategies at low temperatures.
Collapse
Affiliation(s)
- Xin Xiao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Fang Yao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Min Huang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jue Wei
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
2
|
Wei J, Yang S, Xiao X, Wang J. Hydrophobic Solid Photothermal Slippery Surfaces with Rapid Self-repairing, Dual Anti-icing/Deicing, and Excellent Stability Based on Paraffin and Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7747-7759. [PMID: 38526417 DOI: 10.1021/acs.langmuir.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ice and snow disasters have greatly affected both the global economy and human life, and the search for efficient and stable anti-icing/deicing coatings has become the main goal of much research. Currently, the development and application of anti-icing/deicing coatings are severely limited due to their complex preparation, structural fragility, and low stability. This work presents a method for preparing hydrophobic solid photothermal slippery surfaces (SPSS) that exhibit rapid self-repairing, dual anti-icing/deicing properties, and remarkable stability. A photothermal layer of copper oxide (CuO) was prepared by using chemical deposition and etching techniques. The layer was then impregnated with stearic acid and solid paraffin wax to create a hydrophobic solid photothermal slippery surface. This solves the issue of low stability on superhydrophobic surfaces caused by fragile and irretrievable micro/nanostructures. In addition, the underlying photothermal superhydrophobic surface provides good anti-icing/deicing properties even if the paraffin on the surface evaporates or is lost during operation. The findings indicate that when subjected to simulated light irradiation, the coating's surface temperature increases to 80 °C within 12 min. The self-repair process is completed rapidly in 170 s, and at -15 °C, it takes only 201 s for the ice on the surface to melt completely. The surface underneath the paraffin exhibited good superhydrophobic properties, with a contact angle (CA) of 154.1° and a sliding angle (SA) of 6.8° after the loss of paraffin. Simultaneously, the surface's mechanical stability and durability, along with its self-cleaning and antifouling properties, enhance its service life. These characteristics provide promising opportunities for practical applications that require long-term anti-icing/deicing surfaces.
Collapse
Affiliation(s)
- Jue Wei
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Siqi Yang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
3
|
Yan M, Liu W, Lan X, Li T, Zhao W. Multi-stimulus Response Behavior of Biomimetic Autocrine Waxy Materials for Potential Self-Constructing Surface Microstructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47822-47832. [PMID: 37782896 DOI: 10.1021/acsami.3c11357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Many functions of terrestrial plant leaves rely on the regenerable epidermal wax layer. Biomimetic autocrine waxy materials (AWMs) inspired by renewable epidermal waxes are attracting increasing attention. However, the growth properties of the wax layer remain unclear, limiting the development of this promising material. This work focuses on the stimulated growth characteristics and microstructural regulation methods of the waxy layers. It is found that the wax layers exhibit a corresponding behavior of changing their surface micromorphology under force, heat, solvents, and other stimuli during the self-growth process, and as a result of which, various types of fine surface microstructures such as grids, rings, stripes, pattern copying, and printing can be self-built on their surfaces. The composition of the surface autocrine wax layer changes with the autocrine time, and this finding may be useful for the separation and purification of alkane mixtures. In addition, the surface wax layer possesses the ability to self-heal and strengthen itself at the damage site after being stimulated by injury, similar to the damage-response behavior of a bark surface. Such multi-stimulus response behavior described here provides a platform for the discovery of more functional materials and microstructural self-construction techniques and can also serve as a basis for their applications.
Collapse
Affiliation(s)
- Minglong Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenjuan Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xijian Lan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Teng Li
- School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161003, China
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
4
|
da Silva Souza Campanholi K, Sonchini Gonçalves R, Bassi da Silva J, Said dos Santos R, Carla de Oliveira M, Barbosa de Souza Ferreira S, Vizioli de Castro-Hoshino L, Bento Balbinot R, Lazarin-Bidóia D, Luciano Baesso M, Luciano Bruschi M, Vataru Nakamura C, Caetano W. Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Feng X, Zhang X, Tian G. Recent advances in bioinspired superhydrophobic ice-proof surfaces: challenges and prospects. NANOSCALE 2022; 14:5960-5993. [PMID: 35411360 DOI: 10.1039/d2nr00964a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bionic superhydrophobic ice-proof surfaces inspired by natural biology show great potential in daily life. They have attracted wide research interest due to their promising and wide applications in offshore equipment, transportation, power transmission, communication, energy, etc. The flourishing development of superhydrophobic ice-proof surfaces has been witnessed due to the availability of various fabrication methods. These surfaces can effectively inhibit the accumulation of ice, thereby ensuring the safety of human life and property. This review highlights the latest advances in bio-inspired superhydrophobic ice-proof materials. Firstly, several familiar cold-resistant creatures with well-organized texture structures are listed briefly, which provide an excellent template for the design of bioinspired ice-proof surfaces. Next, the advantages and disadvantages of the current techniques for the preparation of superhydrophobic ice-proof surfaces are also analyzed in depth. Subsequently, the theoretical knowledge on icing formation and three passive ice-proof strategies are introduced in detail. Afterward, the recent progress in improving the durability of ice-proof surfaces is emphasized. Finally, the remaining challenges and promising breakthroughs in this field are briefly discussed.
Collapse
Affiliation(s)
- Xiaoming Feng
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaowei Zhang
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|