1
|
Liao M, Shen K, Ma K, Chen Y, Li P, Gutfreund P, Hu X, Petkov JT, Lu JR. Unveiling the multifaceted mechanisms of action in nonionic and cationic biocide combinations against Gram-negative bacteria. J Colloid Interface Sci 2025; 696:137891. [PMID: 40381324 DOI: 10.1016/j.jcis.2025.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Quaternary ammonium compounds (QACs) combined with nonionic surfactants have been among the most effective disinfectants for over half a century, leveraging QACs' broad-spectrum antimicrobial activity that targets microbial membranes. However, the specific interactions between QACs and microbial membranes, as well as the role of nonionic surfactants in disinfection, remain unclear. This study investigates these mechanisms using two representative surfactants: the cationic didecyldimethyl ammonium chloride (DDAC) and the nonionic hexaethylene glycol monododecyl ether (C12E6). The antimicrobial activity of these agents, individually and sequentially, was assessed against Gram-negative bacteria through a series of in vitro assays, including outer membrane (OM) permeability, inner membrane (IM) depolarization, and live/dead bacterial imaging. Further insights into membrane interactions were obtained using model lipid bilayers in conjunction with antimicrobial efficacy matrices, FICI (fractional inhibition concentration index), fluorescent liposome leakage, small-angle neutron scattering (SANS), and neutron reflectivity (NR). Results indicate that C12E6 binds to the rough A lipopolysaccharide (RaLPS) head region in the OM, reassembling it into heterogeneous aggregates but with limited penetration to cause IM disruption. Conversely, DDAC induced structural disruptions in both OM and IM, resulting in low inhibitory concentrations and rapid bacterial killing. In mixtures, the C12E6 : DDAC ratio significantly influences antimicrobial efficacy, with higher C12E6 levels inhibiting DDAC's effective membrane interactions.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Yao Chen
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Peixun Li
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | | | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000 Gansu, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006 Shandong, China
| | - Jordan T Petkov
- Arxada, Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, UK
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Aguilar S, Moreira D, Pereira Lourenço AL, Wilke N, Crosio MA, Vasconcelos A, Barbosa EA, Bispo ECI, Saldanha-Araujo F, Ramada MHS, Escobar FM, Torres CV, Leite JRSA, Marani MM. Enhancing Antimicrobial Peptides from Frog Skin: A Rational Approach. Biomolecules 2025; 15:449. [PMID: 40149984 PMCID: PMC11939955 DOI: 10.3390/biom15030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes the rational design of improved peptide derivatives starting from hylin-Pul3, a peptide previously isolated from the frog Boana pulchella, by optimizing its hydrophobicity, cationicity, and amphipathicity. In silico screening identified six promising candidates: dHP3-31, dHP3-50, dHP3-50.137, dHP3-50.190, dHP3-84, and dHP3-84.39. These derivatives exhibited enhanced activity against Gram-negative bacteria, emphasizing the role of cationicity and the strategic arginine incorporation. Hemolytic assays revealed the derivatives' improved selectivity, particularly for the derivatives with "imperfect amphipathicity". In fibroblast assays, dHP3-84 was well-tolerated, while dHP3-84.39 promoted cell proliferation. Antioxidant assays (ABTS assays) highlighted the Trp-containing derivatives' (dHP3-50.137, dHP3-31) significant activity. The lipid membrane interaction studies showed that hylin-Pul3 disrupts membranes directly, while dHP3-84.39, dHP3-50, and dHP3-50.137 promote vesicle aggregation. Conversely, dHP3-84 did not induce membrane disruption or aggregation, suggesting an intracellular mode of action. Machine learning models were effective in predicting bioactivity, as these predicted AMPs showed enhanced selectivity and potency. Among them, dHP3-84 demonstrated broad-spectrum potential. These findings highlight the value of rational design, in silico screening, and structure-activity studies in optimizing AMPs for therapeutic applications.
Collapse
Affiliation(s)
- Silvana Aguilar
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn U9120ACD, Argentina;
| | - Daniel Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (D.M.); (A.V.); (E.A.B.); (J.R.S.A.L.)
| | - Ana Laura Pereira Lourenço
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Taguatinga 71966-700, DF, Brazil; (A.L.P.L.); (M.H.S.R.)
| | - Natalia Wilke
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (N.W.); (M.A.C.)
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Matías A. Crosio
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (N.W.); (M.A.C.)
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Andreanne Vasconcelos
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (D.M.); (A.V.); (E.A.B.); (J.R.S.A.L.)
- University Center of the Federal District, UDF, Brasília 70390-045, DF, Brazil
| | - Eder Alves Barbosa
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (D.M.); (A.V.); (E.A.B.); (J.R.S.A.L.)
- Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Elizabete C. I. Bispo
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (E.C.I.B.); (F.S.-A.)
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (E.C.I.B.); (F.S.-A.)
| | - Marcelo H. S. Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Taguatinga 71966-700, DF, Brazil; (A.L.P.L.); (M.H.S.R.)
| | - Franco M. Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto 5800, Argentina; (F.M.E.); (C.V.T.)
| | - Cristina V. Torres
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Río Cuarto 5800, Argentina; (F.M.E.); (C.V.T.)
| | - José R. S. A. Leite
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasília, UnB, Brasília 70910-900, DF, Brazil; (D.M.); (A.V.); (E.A.B.); (J.R.S.A.L.)
| | - Mariela M. Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn U9120ACD, Argentina;
| |
Collapse
|
3
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
4
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
5
|
Liao M, Gong H, Shen K, Wang Z, Li R, Campana M, Hu X, Lu JR. Unlocking roles of cationic and aromatic residues in peptide amphiphiles in treating drug-resistant gram-positive pathogens. J Colloid Interface Sci 2024; 672:209-223. [PMID: 38838629 DOI: 10.1016/j.jcis.2024.05.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
6
|
Minnelli C, Mangiaterra G, Laudadio E, Citterio B, Rinaldi S. Investigation on the Synergy between Membrane Permeabilizing Amphiphilic α-Hydrazido Acids and Commonly Used Antibiotics against Drug-Resistant Bacteria. Molecules 2024; 29:4078. [PMID: 39274926 PMCID: PMC11397519 DOI: 10.3390/molecules29174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The growth of (multi)drug resistance in bacteria is among the most urgent global health issues. Monocationic amphiphilic α-hydrazido acid derivatives are structurally simple mimics of antimicrobial peptides (AMPs) with fewer drawbacks. Their mechanism of membrane permeabilization at subtoxic concentrations was found to begin with an initial electrostatic attraction of isolated amphiphile molecules to the phospholipid heads, followed by a rapid insertion of the apolar portions. As the accumulation into the bilayer proceeded, the membrane increased its fluidity and permeability without being subjected to major structural damage. After having ascertained that α-hydrazido acid amphiphiles do not interact with bacterial DNA, they were subjected to synergy evaluation for combinations with conventional antibiotics. Synergy was observed for combinations with tetracycline against sensitive S. aureus and E. coli, as well as with ciprofloxacin and colistin against resistant strains. Additivity with a remarkable recovery in activity of conventional antibiotics (from 2-fold to ≥32-fold) together with largely subtoxic concentrations of α-hydrazido acid derivatives was found for combinations with ciprofloxacin toward susceptible S. aureus and methicillin toward MRSa. However, no potentiation of conventional antibiotics was observed for combinations with linezolid and gentamicin against the corresponding resistant S. aureus and E. coli strains.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
7
|
van Teijlingen A, Edwards DC, Hu L, Lilienkampf A, Cockroft SL, Tuttle T. An active machine learning discovery platform for membrane-disrupting and pore-forming peptides. Phys Chem Chem Phys 2024; 26:17745-17752. [PMID: 38873737 PMCID: PMC11202314 DOI: 10.1039/d4cp01404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Membrane-disrupting and pore-forming peptides (PFPs) play a substantial role in bionanotechnology and can determine the life and death of cells. The control of chemical and ion transport through cell membranes is essential to maintaining concentration gradients. Likewise, the delivery of drugs and intracellular proteins aided by pore-forming agents is of interest in treating malfunctioning cells. Known PFPs tend to be up to 50 residues in length, which is commensurate with the thickness of a lipid bilayer. Accordingly, few short PFPs are known. Here we show that the discovery of PFPs can be accelerated via an active machine learning approach. The approach identified 71 potential PFPs from the 25.6 billion octapeptide sequence space; 13 sequences were tested experimentally, and all were found to have the predicted membrane-disrupting ability, with 1 forming highly stable pores. Experimental verification of the predicted pore-forming ability demonstrated that a range of short peptides can form pores in membranes, while the positioning and characteristics of residues that favour pore-forming behaviour were identified. This approach identified more ultrashort (8-residues, unmodified, non-cyclic) PFPs than previously known. We anticipate our findings and methodology will be useful in discovering new pore-forming and membrane-disrupting peptides for a range of applications from nanoreactors to therapeutics.
Collapse
Affiliation(s)
- Alexander van Teijlingen
- 1Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Daniel C Edwards
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Liao Hu
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Tell Tuttle
- 1Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| |
Collapse
|
8
|
Liao M, Gong H, Liu H, Shen K, Ge T, King S, Schweins R, McBain AJ, Hu X, Lu JR. Combination of a pH-responsive peptide amphiphile and a conventional antibiotic in treating Gram-negative bacteria. J Colloid Interface Sci 2024; 659:397-412. [PMID: 38183806 DOI: 10.1016/j.jcis.2023.12.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Clinical treatments ofgastric infections using antibiotics suffer from the undesired killing of commensal bacteria and emergence of antibiotic resistance. It is desirable to develop pH-responsive antimicrobial peptides (AMPs) that kill pathogenic bacteria such as H. pyloriand resistant E. coli under acidic environment with minimal impact to commensal bacteria whilst not causing antibiotic resistance. EXPERIMENTS Using a combined approach of cell assays, molecular dynamics (MD) simulations and membrane models facilitating biophysical and biochemical measurements including small angle neutron scattering (SANS), we have characterized the pH-responsive physiochemical properties and antimicrobial performance of two amphiphilic AMPs, GIIKDIIKDIIKDI-NH2 and GIIKKIIDDIIKKI-NH2 (denoted as 3D and 2D, respectively), that were designed by selective substitutions of cationic residues of Lys (K) in the extensively studied AMP G(IIKK)3I-NH2 with anionic residue Asp (D). FINDINGS Whilst 2D kept non-ordered coils across the entire pH range studied, 3D displayed a range of secondary structures when pH was shifted from basic to acidic, with distinct self-assembly into nanofibers in aqueous environment. Further experimental and modeling studies revealed that the AMPs interacted differently with the inner and outer membranes of Gram-negative bacteria in a pH-responsive manner and that the structural features characterized by membrane leakage and intramembrane nanoaggregates revealed from fluorescence spectroscopy and SANS were well linked to antimicrobial actions. Different antimicrobial efficacies of 2D and 3D were underlined by the interplay between their ability to bind to the outer membrane lipid LPS (lipopolysaccharide), outer membrane permeability change and inner membrane depolarization and leakage. Furthermore, AMP's binding with the inner membrane under acidic condition caused both the dissipation of membrane potential (Δψ) and the continuous dissipation of transmembrane ΔpH, with Δψ and ΔpH being the key components of the proton motive force. Combinations of antibiotic (Minocycline) with the pH-responsive AMP generated the synergistic effects against Gram-negative bacteria only under acidic condition. These features are crucial to target applications to gastric infections, anti-acne and wound healing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | | | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
9
|
Gong H, Wang X, Hu X, Liao M, Yuan C, Lu JR, Gao L, Yan X. Effective Treatment of Helicobacter pylori Infection Using Supramolecular Antimicrobial Peptide Hydrogels. Biomacromolecules 2024; 25:1602-1611. [PMID: 38323536 DOI: 10.1021/acs.biomac.3c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.
Collapse
Affiliation(s)
- Haoning Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Wu A, Guo Y, Li M, Li Q, Zang H, Li J. Tunable Chirality of Self-Assembled Dipeptides Mediated by Bipyridine Derivative. Angew Chem Int Ed Engl 2023; 62:e202314368. [PMID: 37938522 DOI: 10.1002/anie.202314368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Supramolecular peptide assemblies have been widely used for the development of biomedical, catalytical, and optical materials with chiral nanostructures in view of the intrinsic chirality of peptides. However, the assembly pathway and chiral transformation behavior of various peptides remain largely elusive especially for the transient assemblies under out-of-equilibrium conditions. Herein, the N-fluorenylmethoxycarbonyl-protected phenylalanine-tyrosine dipeptide (Fmoc-FY) was used as a peptide assembly platform, which showed that the assembly proceeds multistep evolution. The original spheres caused by liquid-liquid phase separation (LLPS) can nucleate and elongate into the formation of right-handed helices which were metastable and easily converted into microribbons. Interestingly, a bipyridine derivative can be introduced to effectively control the assembly pathway and induce the formation of thermodynamically stable right-handed or left-handed helices at different stoichiometric ratios. In addition, the chiral assembly can also be regulated by ultrasound or enzyme catalysis. This minimalistic system not only broadens the nucleation-elongation mechanisms of protein aggregates but also promotes the controllable design and development of chiral biomaterials.
Collapse
Affiliation(s)
- Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxian Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong, 250014, China
| | - Meiqi Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qin Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Hu X, Liao M, Shen K, Ding K, Campana M, van der Kamp S, McInnes EF, Padia F, Lu JR. Unraveling How Membrane Nanostructure Changes Impact the Eye Irritation of Nonionic Alkyl Ethoxylate Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59087-59098. [PMID: 38078441 PMCID: PMC10739585 DOI: 10.1021/acsami.3c14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Nonionic surfactants used in agri-spraying processes may cause varying degrees of corneal irritation when they come in direct contact with farmers' eyes, and the exact irritations are thought to be determined by how surfactants interact with corneal cell membranes. However, how nonionic surfactants interact with cell membranes at the molecular and nano levels remains largely unexplored. In this study, the interactions between nonionic surfactants (alkyl ethoxylate, C12Em) and lipid membranes were examined by membrane permeability measurement, quartz crystal microbalance with dissipation, dual polarization interferometry, confocal laser scanning microscopy, and neutron reflection, aiming to reveal complementary structural features at the molecular and nano levels. Apart from the extremely hydrophobic surfactant C12E2, all nonionic surfactants studied could penetrate the model cell membrane composed of a phosphocholine lipid bilayer. Nonionic surfactants with intermediate amphiphilicity (C12E6) rapidly fused into the lipid membrane and stimulated the formation of pores across the lipid bilayer, consistent with the cytoplasm leakage and fast cell necrosis observed from the cytotoxicity study of corneal cells. In comparison, while hydrophobic and hydrophilic surfactants [those with long and short ethoxylates (C12E4,12,23)] could cause mild structural alteration to the outer lipid layer of the membrane, these structural changes were insufficient to elicit large cytoplasmic leakage rapidly and instead cell death occurred over longer periods of time due to changes in the membrane permeability. These results reveal the strong link of surfactant-lipid membrane interactions to surfactant cytotoxicity and the association with amphiphilicity of nonionic surfactants.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mingrui Liao
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Kangcheng Shen
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ke Ding
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mario Campana
- Rutherford
Appleton Laboratory, STFC ISIS Facility, Didcot OX11 0QX, U.K.
| | - Sophie van der Kamp
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Elizabeth F. McInnes
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Faheem Padia
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Jian R. Lu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
13
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
14
|
Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, Fragneto G, Campana M, Lu JR. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023; 637:182-192. [PMID: 36701864 DOI: 10.1016/j.jcis.2023.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS It is widely regarded that antimicrobial peptides (AMPs) kill bacteria by physically disrupting microbial membranes and causing cytoplasmic leakage, but it remains unclear how AMPs disrupt the outer membrane (OM) of Gram-negative bacteria (GNB) and then compromise the inner membrane. We hypothesise that different AMPs impose different structural disruptions, with direct implications to their antimicrobial efficacies. EXPERIMENTS The antimicrobial activities of three typical AMPs, including the designed short AMP, G3, and two natural AMPs, melittin and LL37, against E. coli and their haemolytic activities were studied. Lipopolysaccharide (LPS) and anionic di-palmitoyl phosphatidyl glycerol (DPPG) monolayer models were constructed to mimic the outer membrane and inner membrane leaflets of Gram-negative bacteria. The binding and penetration of AMPs to the model lipid monolayers were systematically studied by neutron reflection via multiple H/D contrast variations. FINDING G3 has relatively high antimicrobial activity, low cytotoxicity, and high proteolytic stability, whilst melittin has significant haemolysis and LL37 has weaker antimicrobial activity. G3 could rapidly lyse LPS and DPPG monolayers within 10-20 min. In contrast, melittin was highly active against the LPS membrane, but the dynamic process lasted up to 80 min, with excessive stacking in the OM. LL37 caused rather weak destruction to LPS and DPPG monolayers, leading to massive adsorption on the membrane surface without penetrating the lipid tail region. These findings demonstrate that the rationally designed AMP G3 was well optimised to impose most effective destruction to bacterial membranes, consistent with its highest bactericidal activity. These different interfacial structural features associated with AMP binding shed light on the future development of active and biocompatible AMPs for infection and wound treatments.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Zheng Y, Chen S, Mao K, Zhu X, Jiang M, Wu CJ, Lu J, Zhu H. de Novo-designed antimicrobial peptides with broad-spectrum antimicrobial potency and rapid wound disinfection. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Liao M, Gong H, Quan X, Wang Z, Hu X, Chen Z, Li Z, Liu H, Zhang L, McBain AJ, Waigh TA, Zhou J, Lu JR. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204428. [PMID: 36417574 DOI: 10.1002/smll.202204428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Aguilar S, Brunetti AE, Garay AV, Santos LC, Perez LO, Moreira D, Cancelarich NL, Barbosa EA, Basso NG, de Freitas SM, Faivovich J, Brand G, Cabrera GM, Leite JRSA, Marani MM. Structure and function of cationic hylin bioactive peptides from the tree frog Boana pulchella in interaction with lipid membranes. Peptides 2023; 159:170900. [PMID: 36336169 DOI: 10.1016/j.peptides.2022.170900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Amphibians have a great diversity of bioactive peptides in their skin. The cDNA prepro-peptide sequencing allowed the identification of five novel mature peptides expressed in the skin of Boana pulchella, four with similar sequences to hylin peptides having a cationic amphipathic-helical structure. Whole mature peptides and some of their fragments were chemically-synthesized and tested against Gram-positive and Gram-negative bacterial strains. The mature peptide hylin-Pul3 was the most active, with a MIC= 14 µM against Staphylococcus aureus. Circular dichroism assays indicated that peptides are mostly unstructured in buffer solutions. Still, adding large unilamellar vesicles composed of dimyristoyl phosphatidylcholine and dimyristoylphosphatidylglycerol increased the α-helix content of novel hylins. These results demonstrate the strong influence of the environment on peptide conformation and highlight its significance while addressing the pharmacology of peptides and their biological function in frogs.
Collapse
Affiliation(s)
- Silvana Aguilar
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Andrés E Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Argentina; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Biomoleculares, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Aisel Valle Garay
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Liem Canet Santos
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Luis O Perez
- IPCSH-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - Daniel Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Natalia L Cancelarich
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Eder Alves Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- IDEAus-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Sonia Maria de Freitas
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia' (CONICET), Buenos Aires, Argentina
| | - Guilherme Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Gabriela M Cabrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil; Laboratorio de Síntese e Análise de Biomolećulas, Instituto de Química, Universidade de Brasília, Brazil; Laboratorio de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnología, Brasil, Instituto de Química, Universidade de Brasília, Brazil
| | - Mariela M Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina.
| |
Collapse
|
18
|
Cheng Q, Zeng P. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides. Curr Pharm Des 2022; 28:3527-3537. [PMID: 36056849 DOI: 10.2174/1381612828666220902124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The antimicrobial peptide (AMP) is a class of molecules that are active against a variety of microorganisms, from bacterial and cancer cells to fungi. Most AMPs are natural products, as part of an organism's own defense system against harmful microbes. However, the growing prevalence of drug resistance has forced researchers to design more promising engineered antimicrobial agents. Inspired by the amphiphilic detergents, the hydrophobic-hydrophilic alternation pattern was considered to be a simple but effective way to de novo design AMPs. In this model, hydrophobic amino acids (leucine, isoleucine etc.) and hydrophilic amino acids (arginine, lysine etc.) were arranged in an alternating way in the peptide sequence. The majority of this type of peptides have a clear hydrophilic-hydrophobic interface, which allows the molecules to have good solubility in both water and organic solvents. When they come into contact with hydrophobic membranes, many peptides undergo a conformational transformation, facilitating themself to insert into the cellular envelope. Moreover, positive-charged peptide amphiphiles tended to have an affinity with negatively-charged membrane interfaces and further led to envelope damage and cell death. Herein, several typical design patterns have been reviewed. Though varying in amino acid sequence, they all basically follow the rule of alternating arrangement of hydrophilic and hydrophobic residues. Based on that, researchers synthesized some lead compounds with favorable antimicrobial activities and preliminarily investigated their possible mode of action. Besides membrane disruption, these AMPs are proven to kill microbes in multiple mechanisms. These results deepened our understanding of AMPs' design and provided a theoretical basis for constructing peptide candidates with better biocompatibility and therapeutic potential.
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
19
|
C-terminal modification of a de novo designed antimicrobial peptide via capping of macrolactam rings. Bioorg Chem 2022; 130:106251. [DOI: 10.1016/j.bioorg.2022.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
20
|
Fa K, Liu H, Li Z, Gong H, Petkov J, Ren Lu J. Acyl Chain Length Tuning Improves Antimicrobial Potency and Biocompatibility of Short Designed Lipopeptides. J Colloid Interface Sci 2022; 630:911-923. [DOI: 10.1016/j.jcis.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
21
|
Lv S, Wang J, You R, Liu S, Ding Y, Hadianamrei R, Tomeh MA, Pan F, Cai Z, Zhao X. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Biomater Sci 2022; 10:4848-4865. [PMID: 35861280 DOI: 10.1039/d2bm00744d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) or host-defence peptides act by penetrating and disrupting the bacterial membranes and are therefore less prone to antimicrobial resistance (AMR) compared to conventional antibiotics. However, there are still many challenges in the clinical application of the naturally occurring AMPs which necessitates further studies to establish the relationship between the chemical structure of AMPs and their antimicrobial activity and selectivity. Herein, we report a study on the relationship between the chemical structure and the biological activity of a series of rationally designed AMPs derived from Ponericin-W1, a naturally occurring AMP from ants. The peptides were designed by modification of the hydrophobic and hydrophilic regions of the lead peptide sequence in a systematic way. Their antibacterial and hemolytic activities were determined in vitro. The antibacterial activity of a representative peptide, At5 was also tested in a mouse model of skin wound infection. Furthermore, the relationship between the physicochemical properties of the peptides and their antibacterial activity was investigated. Replacing the cationic amino acids in the hydrophobic region of the peptides with hydrophobic amino acids enhanced their antibacterial activity and increasing the number of cationic amino acids in the hydrophilic region reduced their toxicity to human red blood cells and thus improved their selectivity for bacteria. Four of the designed peptides, coded as At3, At5, At8, and At10, displayed considerable antibacterial activity and high selectivity for bacteria. At5 also accelerated the wound healing in mice indicating high in vivo efficiency of this peptide. The peptides were more effective against Gram-negative bacteria and no AMR was developed against them in the bacteria even after 25 generations. The results from this study can provide a better understanding of the structural features required for strong antibacterial activity and selectivity, and serve as a guide for the future rational design of AMPs.
Collapse
Affiliation(s)
- Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Jingfang Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Suyu Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Yujie Ding
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
22
|
Rutkauskaite A, White LJ, Hilton KLF, Picci G, Croucher L, Caltagirone C, Hiscock JR. Supramolecular self-associating amphiphiles: determination of molecular self-association properties and calculation of critical micelle concentration using a high-throughput, optical density based methodology. Org Biomol Chem 2022; 20:5999-6006. [PMID: 35147630 DOI: 10.1039/d2ob00066k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular self-associating amphiphiles are a class of amphiphilic salt, the anionic component of which is 'frustrated' in nature, meaning multiple hydrogen bonding modes can be accessed simultaneously. Here we derive critical micelle concentration values for four supramolecular self-associating amphiphiles using the standard pendant drop approach and present a new high-throughput, optical density measurement based methodology, to enable the estimation of critical micelle concentrations over multiple temperatures. In addition, we characterise the low-level hydrogen bonded self-association events in the solid state, through single crystal X-ray diffraction, and in polar organic DMSO-d6 solutions using a combination of 1H NMR techniques. Moving into aqueous ethanol solutions (EtOH/H2O or EtOH/D2O (1 : 19 v/v)), we also show these amphiphilic compounds to form higher-order self-associated species through a combination of 1H NMR, dynamic light scattering and zeta potential studies.
Collapse
Affiliation(s)
| | - Lisa J White
- School of Chemistry and Forensics, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensics, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.
| | - Lorraine Croucher
- BMG Labtech, 8 Bell Business Park, Aylesbury, Bucks, HP19 8JR, England, UK
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.
| | - Jennifer R Hiscock
- School of Chemistry and Forensics, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| |
Collapse
|
23
|
Zhao Y, Wang XY, Sun Y, Li Z, Liu T, Liu QM, Chen J. Truncated analog Brevinin2-CE-N26V5K: Revelation the Augmentation of Antimicrobial Activity. World J Microbiol Biotechnol 2022; 38:162. [PMID: 35834028 DOI: 10.1007/s11274-022-03333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Brevinin2-CE (B2CE), a natural peptide containing 37 amino acids, was first isolated from the skin secretions of the Chinese forest frog Rana chensinensis. B2CE shows good antibacterial activity. In this study, a series of B2CE analogs with differences in cationicity, α-helicity, hydrophobicity and amphipathic properties were designed through chain-length deletion and amino acid substitution. The most potent, nontoxic analog, B2CE-N26V5K, was identified by examination of its antibacterial activity, hemolytic activity, and stability under physiological conditions. The increased cationicity, hydrophobicity and more obvious hydrophilic and hydrophobic surface of B2CE-N26-N16WA18KG23K did not improve the antibacterial activity but increased the hemolytic activity of this modified peptide. The helicity might promote antibacterial activity for brevinin-2 peptides, as the 15-aa analogs with lower helicity show decreased potency against different test bacteria (approximately 2- to 72-fold) compared to B2CE-N26V5K. Additionally, the results indicated that the "Rana box" does not affect the antimicrobial activity of brevinin-2 peptides, as B2CE, B2CE-nonDS and B2CE-C31-37 S have similar strong inhibitory effects on both gram-positive and gram-negative bacteria. However, the "Rana box" does affect the hemolytic activity, as the HC50 values of the 3 peptides range from 25 ~ 130 µM. Furthermore, B2CE-N26V5K caused obvious morphological alterations of the bacterial surfaces, as shown by atomic force microscopy. Additionally, B2CE-N26V5K exhibited strong membrane-disrupting activity when examined using the LIVE/DEAD Bac Light Bacterial Viability Kit. Thus, the antibacterial effect of B2CE-N26V5K on gram-negative and gram-positive bacteria may be caused by cell membrane attack. In conclusion, the excellent candidate B2CE-N26V5K was obtained and has application prospects as a novel anti-infective agent.
Collapse
Affiliation(s)
- Yi Zhao
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Xiao-Yan Wang
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Yan Sun
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Zhi Li
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Tao Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Qing-Mei Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jingyi Chen
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| |
Collapse
|
24
|
Fa K, Liu H, Gong H, Zhang L, Liao M, Hu X, Ciumac D, Li P, Webster J, Petkov J, Thomas RK, Lu JR. In-Membrane Nanostructuring of Cationic Amphiphiles Affects Their Antimicrobial Efficacy and Cytotoxicity: A Comparison Study between a De Novo Antimicrobial Lipopeptide and Traditional Biocides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6623-6637. [PMID: 35587380 PMCID: PMC9161444 DOI: 10.1021/acs.langmuir.2c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.
Collapse
Affiliation(s)
- Ke Fa
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Huayang Liu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haoning Gong
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lin Zhang
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mingrui Liao
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xuzhi Hu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniela Ciumac
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Peixun Li
- ISIS
Neutron Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11 0QX, U.K.
| | - John Webster
- ISIS
Neutron Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11 0QX, U.K.
| | - Jordan Petkov
- Arc
UK Biocides Ltd, Arxada,
Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry, University of
Oxford, South Parks, Oxford OX1
3QZ, U.K.
| | - Jian Ren Lu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
25
|
Zhang J, Gong H, Liao M, Li Z, Schweins R, Penny J, Lu JR. How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility? J Colloid Interface Sci 2022; 608:193-206. [PMID: 34626966 DOI: 10.1016/j.jcis.2021.09.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
HYPOTHESIS The widespread and prolonged use of antifungal antibiotics has led to the rapid emergence of multidrug resistant Candida species that compromise current treatments. Natural and synthetic antimicrobial peptides (AMPs) offer potential alternatives but require further development to overcome some of their current drawbacks. AMPs kill pathogenic fungi by permeabilising their membranes but it remains unclear how AMPs can be designed to maximise their antifungal potency whilst minimising their toxicity to host cells. EXPERIMENTS We have designed a group of short (IIKK)3 AMPs via selective terminal modifications ending up with different amphiphilicities. Their antifungal performance was assessed by minimum inhibition concentration (MICs) and dynamic killing to 4 Candida strains and Cryptococcus neoformans, and the minimum biofilm-eradicating concentrations to kill 95% of the C. albicans biofilms (BEC95). Different antifungal actions were interpreted on the basis of structural disruptions of the AMPs to small unilamellar vesicles from fluorescence leakage, Zeta potential, small angle neutron scattering (SANS) and molecular dynamics simulations (MD). FINDING AMPs possess high antifungal activities against the Candida species and Cryptococcus neoformans; some of them displayed faster dynamic killing than antibiotics like amphotericin B. G(IIKK)3I-NH2 and (IIKK)3II-NH2 were particularly potent against not only planktonic microbes but also fungal biofilms with low cytotoxicity to host cells. It was found that their high selectivity and fast action were well correlated to their fast membrane lysis, evident from data measured from Zeta potential measurements, SANS and MD, and also consistent with the previously observed antibacterial and anticancer performance. These studies demonstrate the important role of colloid and interface science in further developing short, potent and biocompatible AMPs towards clinical treatments via structure design and optimization.
Collapse
Affiliation(s)
- Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
26
|
Ye Z, Aparicio C. Interactions of two enantiomers of a designer antimicrobial peptide with structural components of the bacterial cell envelope. J Pept Sci 2022; 28:e3299. [PMID: 33496073 PMCID: PMC8310526 DOI: 10.1002/psc.3299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
Abstract
Antimicrobial peptides (AMPs) have great potential in treating multi-drug resistant bacterial infections. The antimicrobial activity of d-enantiomers is significantly higher than l-enantiomers and sometimes selectively enhanced against Gram-positive bacteria. Unlike phospholipids in the bacterial plasma membrane, the role of other bacterial cell envelop components is often overlooked in the mode of action of AMPs. In this work, we explored the structural interactions between the main different structural components in Gram-negative/Gram-positive bacteria and the two enantiomers of a designer AMP, GL13K. We observed that both l-GL13K and d-GL13K formed self-assembled amyloid-like nanofibrils when the peptides interacted with lipopolysaccharide and lipoteichoic acid, components of the outer membrane of Gram-negative bacteria and cell wall of Gram-positive bacteria, respectively. Another cell wall component, peptidoglycan, showed strong interactions exclusively with d-GL13K and formed distinct laminar structures. This specific interaction between peptidoglycans and d-GL13K might contribute to the enhanced activity of d-GL13K against Gram-positive bacteria as they have a much thicker peptidoglycan layer than Gram-negative bacteria. A better understanding of the specific role of bacterial cell envelop components in the AMPs mechanism of action can guide the design of more effective Gram-selective AMPs.
Collapse
|
27
|
Cirillo S, Tomeh MA, Wilkinson RN, Hill C, Brown S, Zhao X. Designed Antitumor Peptide for Targeted siRNA Delivery into Cancer Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49713-49728. [PMID: 34657415 DOI: 10.1021/acsami.1c14761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial/anticancer peptides (AMPs/ACPs) have shown promising results as new therapeutic agents in cancer thearpy. Among them, the designed amphiphilic α-helical peptide G(IIKK)3I-NH2 (G3) displayed great affinity and specificity in targeting cancer cells. Here, we report new insights on how G3 penetrates cancer cells. G3 showed high specificity to HCT-116 colon cancer cells compared to the HDFs (human neonatal primary dermal fibroblasts) control. With high concentrations of peptide, a clear cancer cell membrane disruption was observed through SEM. Gene knockdown of the endocytic pathways demonstrated that an energy-dependent endocytic pathway is required for the uptake of the peptide. In addition, G3 can protect and selectively deliver siRNAs into cancer cells and successfully modulated their gene expression. Gene delivery was also tested in 3D cancer spheroids and showed deep penetration delivery into the cancer spheroids. Finally, the in vivo toxicity of G3 was evaluated on zebrafish embryos, showing an increasing toxicity effect with concentration. However, the toxicity of the peptide was attenuated when complexed with siRNA. In addition, negligible toxicity was observed at the concentration range for efficient gene delivery. The current results demonstrate that G3 is promising as an excellent agent for cancer therapy.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Chris Hill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
28
|
A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. ENERGIES 2021. [DOI: 10.3390/en14185819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the principles of capacitance and ion transport are described from a theoretical and practical point of view. The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These concepts are attributed to applications in the electrochemical technologies such as energy storage and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be used in newer applications including biological sensors and multifunctional microsupercapacitors. This review improves our understanding of ion transport phenomena and demonstrates various applications that is applicable of the continued development in the technologies described.
Collapse
|
29
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
30
|
Gou S, Li B, Ouyang X, Ba Z, Zhong C, Ni J. Tuning the Activity of Anoplin by Dendrimerization of Lysine and Lipidation of the N-Terminal. ACS OMEGA 2021; 6:21359-21367. [PMID: 34471740 PMCID: PMC8387982 DOI: 10.1021/acsomega.1c01854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Dendrimeric antimicrobial peptides or lipopeptides have strong transmembrane ability and antibacterial activity. To obtain some ideal antimicrobial peptides, anoplin, a natural antimicrobial peptide with weak antimicrobial activity, was modified by C-terminal dendrimerization using lysine and N-terminal lipidation using fatty acids. 2K-3A-C4, a trimer of anoplin, was dendrimerized by two lysines at the C-terminal and was lipidated by n-butyric acid at the N-terminal, and thus exhibited the best antibacterial activity. However, the trimer had high hemolytic activity. Finally, A-C8, a simple structural lipopeptide, which is not a dendrimer, was obtained following the lipidation of anoplin using octanoic acid; it exhibited the highest therapeutic index, which makes it a probable antibiotic and thus was screened out.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Institute
of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Xu Ouyang
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Zufang Ba
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
| | - Chao Zhong
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Institute
of Pharmaceutics, School of Pharmacy, Lanzhou
University, Lanzhou 730000, China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Unravelling the structural complexity of protein-lipid interactions with neutron reflectometry. Biochem Soc Trans 2021; 49:1537-1546. [PMID: 34240735 DOI: 10.1042/bst20201071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. In this brief review an introduction to the utilisation of NR in the study of protein-lipid interactions is given. Cold neutron beams penetrate matter deeply, have low energies, wavelengths in the Ångstrom regime and are sensitive to light elements. High differential hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic labelling to be utilised to enhance or diminish the scattering signal of individual components within complex biological structures. The combination of these effects means NR can probe buried structures such as those at the solid-liquid interface and encode molecular level structural information on interfacial protein-lipid complexes revealing the relative distribution of components as well as the overall structure. Model biological membrane sample systems can be structurally probed to examine phenomena such as antimicrobial mode of activity, as well as structural and mechanistic properties peripheral/integral proteins within membrane complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, detailing how changes in the protein/lipid distributions across the membrane before and after the protein interaction can be easily encoded using hydrogen isotope labelling.
Collapse
|
32
|
In situ determination of the structure and composition of Langmuir monolayers at the air/water interface by neutron and X-ray reflectivity and ellipsometry. Adv Colloid Interface Sci 2021; 293:102434. [PMID: 34022749 DOI: 10.1016/j.cis.2021.102434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
This review focuses on the description of the structure and composition of a variety of Langmuir monolayers (LMs) deposited at the air/water interface by using ellipsometry, Brewster Angle microscopy and scattering techniques, mainly neutron and X-ray reflectometry. Since the first experiment done by Angels Pockels with a homemade trough in her home kitchen until today, LMs of different materials have been extensively studied providing not only relevant model systems in biology, physics and chemistry but also precursors of novel materials via their deposition on solid substrates. There is a vast amount of surface-active materials that can form LMs and, therefore, far from a revision of the state-of-the-art, we will emphasize here: (i) some fundamental aspects to understand the physics behind the molecular deposition at the air/water interface; (ii) the advantages in using in situ techniques, such as reflectometry or ellipsometry, to resolve the interfacial architecture and conformation of molecular films; and, finally, (iii) a summary of several systems that have certain interest from the experimental or conceptual point of view. Concretely, we will report here advances in polymers confined to interfaces and surfactants, from fatty acids and phospholipids monolayers to more unconventional ones such as graphene oxide.
Collapse
|
33
|
Gong H, Hu X, Liao M, Fa K, Ciumac D, Clifton LA, Sani MA, King SM, Maestro A, Separovic F, Waigh TA, Xu H, McBain AJ, Lu JR. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16062-16074. [PMID: 33797891 DOI: 10.1021/acsami.1c01643] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gram-negative bacteria are covered by both an inner cytoplasmic membrane (IM) and an outer membrane (OM). Antimicrobial peptides (AMPs) must first permeate through the OM and cell wall before attacking the IM to cause cytoplasmic leakage and kill the bacteria. The bacterial OM is an asymmetric bilayer with the outer leaflet primarily composed of lipopolysaccharides (LPSs) and the inner leaflet composed of phospholipids (PLs). Two cationic α-helical AMPs were designed to target Gram-negative bacteria, a full peptide G(IIKK)3I-NH2 (G3), and a hydrophobic lipopeptide C8-G(IIKK)2I-NH2 (C8G2, with C8 denoting the octanoyl chain). LPS dominates OM functions as the first line of defense against antibiotics, thereby reducing drug susceptibility. This work explores how the two AMPs interact with LPS through several carefully chosen OM models that facilitated measurements from solid-state nuclear magnetic resonance (ss-NMR), small-angle neutron scattering (SANS), and neutron reflectivity (NR). The results revealed that G3 molecules bound preferably to the LPS head region and functioned as bridge molecules to reassemble the dislocated lipids into bilayer stacks. In contrast, C8G2 lipopeptides could quickly penetrate into the central region of the OM to cause direct removal of some membrane lipids. Different structural disruptions implicated different antimicrobial efficacies from these AMPs. The demonstration of the structural features underlying different susceptibilities of the OM to AMPs offers a useful route for the future development of strain-specific AMPs against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Daniela Ciumac
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Luke A Clifton
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Armando Maestro
- Institute Laue Langevin, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
34
|
Liao M, Liu H, Wang X, Hu X, Huang Y, Liu X, Brenan K, Mecha J, Nirmalan M, Lu JR. A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Curr Opin Colloid Interface Sci 2021; 52:101417. [PMID: 33642918 PMCID: PMC7902177 DOI: 10.1016/j.cocis.2021.101417] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, most countries have recommended their citizens to adopt social distance, hand hygiene, and face mask wearing. However, wearing face masks has not been well adopted by many citizens. While the reasons are complex, there is a general perception that the evidence to support face mask wearing is lacking, especially for the general public in a community setting. Face mask wearing can block or filter airborne virus-carrying particles through the working of colloid and interface science. This paper assesses current knowledge behind the design and functioning of face masks by reviewing the selection of materials, mask specifications, relevant laboratory tests, and respiratory virus transmission trials, with an overview of future development of reusable masks for the general public. This review highlights the effectiveness of face mask wearing in the prevention of COVID-19 infection.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xi Wang
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yuhao Huang
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuqing Liu
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Keith Brenan
- Division of Cancer Studies, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jared Mecha
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Mahesan Nirmalan
- Division of Medical Education,School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
35
|
Gong H, Sani MA, Hu X, Fa K, Hart JW, Liao M, Hollowell P, Carter J, Clifton LA, Campana M, Li P, King SM, Webster JRP, Maestro A, Zhu S, Separovic F, Waigh TA, Xu H, McBain AJ, Lu JR. How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria? ACS APPLIED MATERIALS & INTERFACES 2020; 12:55675-55687. [PMID: 33259204 DOI: 10.1021/acsami.0c17222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jack William Hart
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jessica Carter
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Luke A Clifton
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Peixun Li
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - John R P Webster
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Armando Maestro
- Institute Laue Langevin, 71 Avenue des Martyrs, CS-20156, Grenoble 38042, France
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|