1
|
Zhang L, Chen Y, Cao S, Yuan D, Tang X, Wang D, Gao Y, Zhang J, Zhao Y, Yang X, Lu Z, Fan Q, Sun B. Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402756. [PMID: 38696647 PMCID: PMC11234412 DOI: 10.1002/advs.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Colloidal quantum dots (CQDs) are promising optoelectronic materials for solution-processed thin film optoelectronic devices. However, the large surface area with abundant surface defects of CQDs and trap-assisted non-radiative recombination losses at the interface between CQDs and charge-transport layer limit their optoelectronic performance. To address this issue, an interface heterojunction strategy is proposed to protect the CQDs interface by incorporating a thin layer of polyethyleneimine (PEIE) to suppress trap-assisted non-radiative recombination losses. This thin layer not only acts as a protective barrier but also modulates carrier recombination and extraction dynamics by forming heterojunctions at the buried interface between CQDs and charge-transport layer, thereby enhancing the interface charge extraction efficiency. This enhancement is demonstrated by the shortened lifetime of carrier extraction from 0.72 to 0.46 ps. As a result, the resultant PbS CQD solar cells achieve a power-conversion-efficiency (PCE) of 13.4% compared to 12.2% without the heterojunction.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Yong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Shuang Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Defei Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Dengke Wang
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Yajun Gao
- LONGi Central R&D InstituteLONGi Green Energy Technology Co.Xi'anChina
| | - Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Yongbiao Zhao
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Xichuan Yang
- Institute of Artificial PhotosynthesisState Key Laboratory of Fine ChemicalsDUT−KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology (DUT)2 Linggong Rd.Dalian116024China
| | - Zhenghong Lu
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| |
Collapse
|
2
|
Huang T, Wu C, Yang J, Hu P, Qian L, Sun T, Xiang C. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:915-923. [PMID: 38145458 DOI: 10.1021/acsami.3c16599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The interface VOC loss between the active layer and the hole transport layer (HTL) of lead sulfide colloidal quantum dot (PbS-CQD) solar cells is a significant factor influencing the efficiency improvement of PbS colloidal quantum dot solar cells (PbS-CQDSCs). Currently, the most advanced solar cells adopt organic P-type HTLs (PbS-EDT) via solid-state ligand exchange with 1,2-ethanedithiol (EDT) on the CQD top active layer. However, EDT is unable to altogether remove the initial ligand oleic acid from the quantum dot surface, and its high reactivity leads to cracks in the HTL film caused by volume contractions, which inevitably results in significant VOC loss. These flaws prompted this research to develop a method involving hybrid organic ligand exchange using 3-mercaptopropionic acid (MPA) and 1,2-EDT (PbS-Hybrid) to overcome these drawbacks of VOC loss. The results indicated that the new exchange strategy improved the quality of the HTL film and benefited from the enhanced passivation of the quantum dot surface and better alignment of energy levels, and the average VOC of PbS-Hybrid devices is increased by approximately 25 mV compared to control devices. With the enhanced VOC, the average power conversion efficiency (PCE) of the devices is improved by 10%, with the highest PCE reaching 13.24%.
Collapse
Affiliation(s)
- Tengzuo Huang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, Zhejiang 315336, P. R. China
- International Joint Research Center of China for Optoelectronic and Energy Materials, Energy Research Institute, Yunnan University, Kunming, Yunnan 650091, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang 315201, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Chunyan Wu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, Zhejiang 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang 315201, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Jinpeng Yang
- International Joint Research Center of China for Optoelectronic and Energy Materials, Energy Research Institute, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Pengyu Hu
- International Joint Research Center of China for Optoelectronic and Energy Materials, Energy Research Institute, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, Zhejiang 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang 315201, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Tao Sun
- International Joint Research Center of China for Optoelectronic and Energy Materials, Energy Research Institute, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, Zhejiang 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang 315201, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
3
|
Song H, Yang J, Jeong WH, Lee J, Lee TH, Yoon JW, Lee H, Ramadan AJ, Oliver RDJ, Cho SC, Lim SG, Jang JW, Yu Z, Oh JT, Jung ED, Song MH, Park SH, Durrant JR, Snaith HJ, Lee SU, Lee BR, Choi H. A Universal Perovskite Nanocrystal Ink for High-Performance Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209486. [PMID: 36496257 DOI: 10.1002/adma.202209486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge. In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for "dual-mode" devices with both PV and LED functionalities.
Collapse
Affiliation(s)
- Hochan Song
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jonghee Yang
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Woo Hyeon Jeong
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jeongjae Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Jung Won Yoon
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Hajin Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Alexandra J Ramadan
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Robert D J Oliver
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Seong Chan Cho
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Seul Gi Lim
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ji Won Jang
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Zhongkai Yu
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - Jae Taek Oh
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Eui Dae Jung
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- SPECIFIC IKE, College of Engineering, Swansea University, Swansea, SA2 7AX, United Kingdom
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - Hyosung Choi
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
4
|
Yang J, Cho SC, Lee S, Yoon JW, Jeong WH, Song H, Oh JT, Lim SG, Bae SY, Lee BR, Ahmadi M, Sargent EH, Yi W, Lee SU, Choi H. Guanidinium-Pseudohalide Perovskite Interfaces Enable Surface Reconstruction of Colloidal Quantum Dots for Efficient and Stable Photovoltaics. ACS NANO 2022; 16:1649-1660. [PMID: 35025199 DOI: 10.1021/acsnano.1c10636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Complete surface passivation of colloidal quantum dots (CQDs) and their strong electronic coupling are key factors toward high-performance CQD-based photovoltaics (CQDPVs). Also, the CQD matrices must be protected from oxidative environments, such as ambient air and moisture, to guarantee air-stable operation of the CQDPVs. Herein, we devise a complementary and effective approach to reconstruct the oxidized CQD surface using guanidinium and pseudohalide. Unlike conventional halides, thiocyanate anions provide better surface passivation with effective replacement of surface oxygen species and additional filling of defective sites, whereas guanidinium cations promote the construction of epitaxial perovskite bridges within the CQD matrix and augment electronic coupling. Additionally, we replace a defective 1,2-ethanedithiol-treated CQD hole transport layer (HTL) with robust polymeric HTLs, based on a judicious consideration of the energy level alignment established at the CQD/HTL interface. These efforts collectively result in high-performance and stable CQDPVs with photocurrents over 30 mA cm-2, ∼80% quantum efficiency at excitonic peaks and stable operation under humid and ambient conditions. Elucidation of carrier dynamics further reveals that interfacial recombination associated with band alignment governs both the CQDPV performance and stability.
Collapse
Affiliation(s)
- Jonghee Yang
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Seong Chan Cho
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jung Won Yoon
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Woo Hyeon Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hochan Song
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Taek Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seul Gi Lim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Yong Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Mahshid Ahmadi
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Whikun Yi
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Yang J, Kim M, Lee S, Yoon JW, Shome S, Bertens K, Song H, Lim SG, Oh JT, Bae SY, Lee BR, Yi W, Sargent EH, Choi H. Solvent Engineering of Colloidal Quantum Dot Inks for Scalable Fabrication of Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36992-37003. [PMID: 34333973 DOI: 10.1021/acsami.1c06352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of colloidal quantum dot (CQD) inks enables single-step spin-coating of compact CQD films of appropriate thickness, enabling the promising performance of CQD photovoltaics (CQDPVs). Today's highest-performing CQD inks rely on volatile n-butylamine (BTA), but it is incompatible with scalable deposition methods since a rapid solvent evaporation results in irregular film thickness with an uneven surface. Here, we present a hybrid solvent system, consisting of BTA and N,N-dimethylformamide, which has a favorable acidity for colloidal stability as well as an appropriate vapor pressure, enabling a stable CQD ink that can be used to fabricate homogeneous, large-area CQD films via spray-coating. CQDPVs fabricated with the CQD ink exhibit suppressed charge recombination as well as fast charge extraction compared with conventional CQD ink-based PVs, achieving an improved power conversion efficiency (PCE) of 12.22% in spin-coated devices and the highest ever reported PCE of 8.84% among spray-coated CQDPVs.
Collapse
Affiliation(s)
- Jonghee Yang
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Minseon Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jung Won Yoon
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanchari Shome
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Koen Bertens
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Hochan Song
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seul Gi Lim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Taek Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Yong Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea
| | - Whikun Yi
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Hyosung Choi
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science & Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|