1
|
De Chiara B, Del Duca F, Hussain MZ, Kratky T, Banerjee P, Dummert SV, Khoshouei A, Chanut N, Peng H, Al Boustani G, Hiendlmeier L, Jinschek J, Ameloot R, Dietz H, Wolfrum B. Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3772-3784. [PMID: 39762089 PMCID: PMC11744510 DOI: 10.1021/acsami.4c18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025]
Abstract
The successful development of a metal-organic framework (MOF)-derived Co/Co3O4/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors. Comprehensive morphological, structural, and chemical analyses confirm the formation of porous LIG from the laser irradiation of polyimide, while the LIG+ZIF-67-derived composites feature size-controlled and uniformly distributed Co/Co3O4 core/shell nanoparticles (NPs) in the semihollow wasp-nest-like carbon matrix from photothermal decomposition of ZIF-67, embedded within the LIG electrode area. The high surface area and porosity of this ZIF-67-derived nitrogen-rich carbon facilitate charge transfer processes, whereas size-controlled Co/Co3O4 core/shell NPs offer accessible electrochemical active sites, making these LIG+ZIF-67-derived composite-based sensors promising materials for applications requiring high charge injection capability and low electrode/electrolyte interface impedance. The PI+Z67L sensor exhibited a 400 times higher specific capacitance (2.4 mF cm-2) compared to the PIL sensor (6 μF cm-2). This laser scribing approach enables the rapid and cost-effective fabrication of high-performance electrochemical sensors enhanced by the integration of tailored MOF-derived composites.
Collapse
Affiliation(s)
- Beatrice De Chiara
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Fulvia Del Duca
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Mian Zahid Hussain
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Tim Kratky
- Physical
Chemistry with Focus on Catalysis, Department of Chemistry, School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr 4, 85748 Garching, Germany
| | - Pritam Banerjee
- National
Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Sarah V. Dummert
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ali Khoshouei
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Nicolas Chanut
- Center for
Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven, 3001 Leuven, Belgium
| | - Hu Peng
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - George Al Boustani
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Lukas Hiendlmeier
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Joerg Jinschek
- National
Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Rob Ameloot
- Center for
Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven, 3001 Leuven, Belgium
| | - Hendrik Dietz
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Guo S, Gao M, Zhang W, Liu F, Guo X, Zhou K. Recent Advances in Laser-Induced Synthesis of MOF Derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303065. [PMID: 37319033 DOI: 10.1002/adma.202303065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials with permanent pores constructed by the self-assembly of organic ligands and metal clusters through coordination bonds. Due to their diversity and tunability, MOFs are used as precursors to be converted into other types of functional materials by pyrolytic recrystallization. Laser-induced synthesis is proven to be a powerful pyrolytic processing technique with fast and accurate laser irradiation, low loss, high efficiency, selectivity, and programmability, which endow MOF derivatives with new features. Laser-induced MOF derivatives exhibit high versatility in multidisciplinary research fields. In this review, first, the basic principles of laser smelting and the types of materials for laser preparation of MOF derivatives are briefly introduced. Subsequently, it is focused on the peculiarity of the engineering of structural defects and their applications in catalysis, environmental protection, and energy fields. Finally, the challenges and opportunities at the current stage are highlighted with the aim of elucidating the future direction of the rapidly growing field of laser-induced synthesis of MOF derivatives.
Collapse
Affiliation(s)
- Shuailong Guo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Levshakova A, Kaneva M, Borisov E, Panov M, Shmalko A, Nedelko N, Mereshchenko AS, Skripkin M, Manshina A, Khairullina E. Simultaneous Catechol and Hydroquinone Detection with Laser Fabricated MOF-Derived Cu-CuO@C Composite Electrochemical Sensor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7225. [PMID: 38005154 PMCID: PMC10673110 DOI: 10.3390/ma16227225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 μM), and low limits of detection (0.39 μM for HQ and 0.056 μM for CT).
Collapse
Affiliation(s)
- Aleksandra Levshakova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Maria Kaneva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Evgenii Borisov
- Center for Optical and Laser Materials Research, St. Petersburg University, St. Petersburg 199034, Russia;
| | - Maxim Panov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Faculty of Pharmaceutical Technology, St. Petersburg State Chemical Pharmaceutical University, Professor Popov Str., 14, Lit. A, St. Petersburg 197022, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Alexandr Shmalko
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Nikolai Nedelko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Andrey S. Mereshchenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Mikhail Skripkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Evgeniia Khairullina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| |
Collapse
|
4
|
Gunina EV, Zhestkij NA, Sergeev M, Bachinin SV, Mezenov YA, Kulachenkov NK, Timofeeva M, Ivashchenko V, Timin AS, Shipilovskikh SA, Yakubova AA, Pavlov DI, Potapov AS, Gong J, Khamkhash L, Atabaev TS, Bruyere S, Milichko VA. Laser-Assisted Design of MOF-Derivative Platforms from Nano- to Centimeter Scales for Photonic and Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47541-47551. [PMID: 37773641 DOI: 10.1021/acsami.3c10193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Laser conversion of metal-organic frameworks (MOFs) has recently emerged as a fast and low-energy consumptive approach to create scalable MOF derivatives for catalysis, energy, and optics. However, due to the virtually unlimited MOF structures and tunable laser parameters, the results of their interaction are unpredictable and poorly controlled. Here, we experimentally base a general approach to create nano- to centimeter-scale MOF derivatives with the desired nonlinear optical and catalytic properties. Five three- and two-dimensional MOFs, differing in chemical composition, topology, and thermal resistance, have been selected as precursors. Tuning the laser parameters (i.e., pulse duration from fs to ns and repetition rate from kHz to MHz), we switch between ultrafast nonthermal destruction and thermal decomposition of MOFs. We have established that regardless of the chemical composition and MOF topology, the tuning of the laser parameters allows obtaining a series of structurally different derivatives, and the transition from femtosecond to nanosecond laser regimes ensures the scaling of the derivatives from nano- to centimeter scales. Herein, the thermal resistance of MOFs affects the structure and chemical composition of the resulting derivatives. Finally, we outline the "laser parameters versus MOF structure" space, in which one can create the desired and scalable platforms with nonlinear optical properties from photoluminescence to light control and enhanced catalytic activity.
Collapse
Affiliation(s)
- Ekaterina V Gunina
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Nikolaj A Zhestkij
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Maksim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri A Mezenov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Maria Timofeeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Alexander S Timin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Anastasia A Yakubova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Dmitry I Pavlov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Andrei S Potapov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Laura Khamkhash
- Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Université de Lorraine, CNRS, IJL, F-54011 Nancy, France
| |
Collapse
|
5
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Qin Z, Liu J, Sun B, Zou H, Chen L, Xu Y, Cao Y, Chen C. AC/Ni(OH)2 as a porous electrode material for supercapacitors with high-performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Britto JF, Samson VAF, Bernadsha SB, Madhavan J, Raj MVA. Synthesis of rNiCo Nanocomposite - As an Electrode Material for Supercapacitor Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Hydrothermal synthesis and electrochemical performance of Fe-doped Co hydroxide electrode materials. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Tao X, Zhang L, He X, Fang L, Wang H, Zhang L, Yu L, Zhu G. Nitrogen-Doped Porous MXene (Ti 3C 2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules 2022; 27:4890. [PMID: 35956839 PMCID: PMC9369756 DOI: 10.3390/molecules27154890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Flexible supercapacitors (FSCs) are limited in flexible electronics applications due to their low energy density. Therefore, developing electrode materials with high energy density, high electrochemical activity, and remarkable flexibility is challenging. Herein, we designed nitrogen-doped porous MXene (N-MXene), using melamine-formaldehyde (MF) microspheres as a template and nitrogen source. We combined it with an electrospinning process to produce a highly flexible nitrogen-doped porous MXene nanofiber (N-MXene-F) as a self-supporting electrode material and assembled it into a symmetrical supercapacitor (SSC). On the one hand, the interconnected mesh structure allows the electrolyte to penetrate the porous network to fully infiltrate the material surface, shortening the ion transport channels; on the other hand, the uniform nitrogen doping enhances the pseudocapacitive performance. As a result, the as-assembled SSC exhibited excellent electrochemical performance and excellent long-term durability, achieving an energy density of 12.78 Wh kg-1 at a power density of 1080 W kg-1, with long-term cycling stability up to 5000 cycles. This work demonstrates the impact of structural design and atomic doping on the electrochemical performance of MXene and opens up an exciting possibility for the fabrication of highly FSCs.
Collapse
Affiliation(s)
- Xin Tao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China; (X.T.); (L.Z.)
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Linlin Zhang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China; (X.T.); (L.Z.)
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Xuedong He
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Lingzi Fang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Lianghao Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; (L.F.); (H.W.); (L.Z.)
| |
Collapse
|
11
|
Gao X, Bi J, Gao J, Meng L, Xie L, Liu C. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Li L, Liu B, Hou S, Yang Q, Zhu Z. Preparation of bulk doped NiCo 2O 4 bimetallic oxide supercapacitor materials by in situ growth method. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ling Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, PR China
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, PR China
| | - Shaogang Hou
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, PR China
| | - Qiming Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, PR China
| | - Zichuang Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, PR China
| |
Collapse
|
13
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Luo S, Wang Y, Kan X. Cu-THQ metal-organic frameworks: A kind of new inner reference for the reliable detection of dopamine base on ratiometric electrochemical sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Rao Y, Yuan M, Luo F, Li H, Yu J, Chen X. Laser In-Situ synthesis of metallic cobalt decorated porous graphene for flexible In-Plane microsupercapacitors. J Colloid Interface Sci 2021; 610:775-784. [PMID: 34863550 DOI: 10.1016/j.jcis.2021.11.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023]
Abstract
Transition metal nanoparticles-graphene nanocomposites incorporate the advantages of graphene and metal nanoparticles, which arouse extensive attention. Here, we design a novel, facile and versatile method for in-situ synthesis of laser-induced porous graphene (LIG) decorated with cobalt particles (Co). The LIG/Co nanocomposites are fabricated through one-step laser direct scribing on a customized film composed of polyimide (PI) powder, polyvinyl alcohol (PVA), and cobalt chloride (CoCl2·6H2O) precursors. Benefiting from the unique properties of Co nanoparticles embedded LIG, the obtained optimal in-plane micro-supercapacitors (IMSC) based on LIG/Co-1.5 possesses an excellent areal capacitance of 110.11 mF cm-2 and a superior energy density of 9.79 μWh cm-2, which are about 79 times that of pure LIG-based IMSCs. Simultaneously, the LIG/Co-1.5 MSCs also present good cycling stability, remarkable modular integration capability, and outstanding mechanical flexibility, showing potential for practical applications. Additionally, the density functional theory (DFT) calculations indicate that the decorating of cobalt particles elevates electron transfer. Moreover, the interaction between electrolyte and electrodes is also improved with the introduction of cobalt particles. Therefore, this strategy offers a new avenue for facile and large-scale manufacturing of various metallic atoms in-situ decorating in porous graphene.
Collapse
Affiliation(s)
- Yifan Rao
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 China
| | - Min Yuan
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 China
| | - Feng Luo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 China
| | - Hui Li
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 China.
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 China.
| |
Collapse
|
16
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
17
|
Metal-organic frameworks based on Schiff base condensation reaction as battery-type electrodes for supercapattery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|