1
|
Xu N, Xu L, Wang Y, Liu W, Xu W, Hu X, Han ZK. Unraveling the formation of oxygen vacancies on the surface of transition metal-doped ceria utilizing artificial intelligence. NANOSCALE 2024; 16:9853-9860. [PMID: 38712569 DOI: 10.1039/d3nr05950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.
Collapse
Affiliation(s)
- Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Yue Wang
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Shen Z, Gao E, Meng X, Xu J, Sun Y, Zhu J, Li J, Wu Z, Wang W, Yao S, Dai Q. Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO 2 Nanobelts: Hydrolysis-Oxidation Process and Shielding Effect of Acetates/Alcoholates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3864-3874. [PMID: 36812295 DOI: 10.1021/acs.est.2c07991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, based on the comparison of two counterparts [Mn- and Cr-modified CeO2 nanobelts (NBs)] with the opposite effects, some novel mechanistic insights into the ethyl acetate (EA) catalytic combustion over CeO2-based catalysts were proposed. The results demonstrated that EA catalytic combustion consisted of three primary processes: EA hydrolysis (C-O bond breakage), the oxidation of intermediate products, and the removal of surface acetates/alcoholates. Rapid EA hydrolysis typically occurs on surface acid/base sites or hydroxyl groups, and the removal of surface acetates/alcoholates resulting from EA hydrolysis is considered the rate-determining step. The deposited acetates/alcoholates like a shield covered the active sites (such as surface oxygen vacancies), and the enhanced mobility of the surface lattice oxygen as an oxidizing agent played a vital role in breaking through the shield and promoting the further hydrolysis-oxidation process. The Cr modification impeded the release of surface-activated lattice oxygen from the CeO2 NBs and induced the accumulation of acetates/alcoholates at a higher temperature due to the increased surface acidity/basicity. Conversely, the Mn-substituted CeO2 NBs with the higher lattice oxygen mobility effectively accelerated the in situ decomposition of acetates/alcoholates and facilitated the re-exposure of surface active sites. This study may contribute to a further mechanistic understanding into the catalytic oxidation of esters or other oxygenated volatile organic compounds over CeO2-based catalysts.
Collapse
Affiliation(s)
- Zude Shen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xinyu Meng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Sheng H, Fang Y, Huang Y, Huang Z, Shen W, Xu H. Highly Active Cu-CeZrO x/ZSM-5@Si Catalyst for Direct Conversion of Syngas to Aromatics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haibing Sheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yue Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yijia Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
4
|
Yang Y, Zhang L, Guo H, Ding Z, Wang W, Li J, Zhou L, Tu X, Qiu Y, Chen G, Sun Y. Keys Unlocking Redispersion of Reactive PdO x Nanoclusters on Ce-Functionalized Perovskite Oxides for Methane Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30704-30713. [PMID: 35763553 DOI: 10.1021/acsami.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nowadays, trace CH4 emitted from vehicle exhausts severely threaten the balance of the ecology system of our earth. Thereby, the development of active and stable catalysts capable of methane conversion under mild conditions is critical. Here, we present a convenient method to redisperse catalytically inert PdO nanoparticles (NPs) (>10 nm) into reactive PdOx nanoclusters (∼2 nm) anchored on a Ce-doped LaFeO3 parent. Isothermally activated in an N2 flow, the redispersed catalyst achieved a CH4 conversion of 90% at 400 °C, which is significantly higher than the fresh and H2- and O2-treated counterparts (625, 616, and 641 °C, respectively), indicating the importance of the gas atmosphere in the redispersion of PdO NPs. In addition, the comprehensive catalyst characterizations demonstrated that the isolated Ce ions in the perovskite lattice play an irreplaceable role in the redispersion of reactive sites and the reduction of the energy barrier for C-H scission. More importantly, the Ce additive helps to stabilize the PdOx species by reducing overoxidation, resulting in significant lifetime extension. Through a thorough understanding of structural manipulation, this study sheds light on the design of highly performing supported catalysts for methane oxidation.
Collapse
Affiliation(s)
- Yanling Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- College of Energy, Xiamen University, Xiamen 361005, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- College of Energy, Xiamen University, Xiamen 361005, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongquan Guo
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhenfa Ding
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Weitao Wang
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Jianhui Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
5
|
Cui Y, Yang H, Dai C, Ren P, Song C, Ma X. Coupling of LaFeO 3–Plasma Catalysis and Cu +/Cu 0 Electrocatalysis for Direct Ammonia Synthesis from Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Cui
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| | - Hui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, P.R. China
| | - Chengyi Dai
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, P.R. China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xiaoxun Ma
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
| |
Collapse
|
6
|
Yuan X, Meng L, Zheng C, Zhao H. Deep Insight into the Mechanism of Catalytic Combustion of CO and CH 4 over SrTi 1-xB xO 3 (B = Co, Fe, Mn, Ni, and Cu) Perovskite via Flame Spray Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52571-52587. [PMID: 34705414 DOI: 10.1021/acsami.1c14055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskites have been recognized as affordable substitutes for noble-metal catalysts for their tunable catalytic activity and thermal stability. Nevertheless, the highly demanding synthesis procedure still hinders the application of perovskites in catalytic combustion. In this work, a series of nanostructured SiTiO3 perovskites with B-site partial substitution by Co, Fe, Mn, Ni, and Cu are synthesized via flame spray pyrolysis in one step. The comprehensive characterizations on textural properties of nanostructured perovskites reveal that the flame-made perovskite nanoparticles all exhibit high crystal purity and large specific surface area (∼40 m2/g). Furthermore, the highest catalytic activity is achieved by SrTi0.5Co0.5O3 due to the formation of favorable oxygen vacancies, outstanding reducibility, and oxygen desorption capability. Additionally, the presence of 10 vol % water vapor during long-term testing indicates remarkable durability and water resistance. Finally, the CO oxidation and CH4 dehydrogenation on SrTiO3 incorporating Co atoms are more thermodynamically and kinetically favorable than those on other doped surfaces.
Collapse
Affiliation(s)
- Xing Yuan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingquan Meng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chaohe Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Wang J, Huang Z, Fang Y, Shen W, Xu H. La‐Based Perovskites Combined with HZSM‐5 for Selective Conversion of Syngas into Aromatics. ChemistrySelect 2021. [DOI: 10.1002/slct.202102689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinhao Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Zhen Huang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Yue Fang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Wei Shen
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Hualong Xu
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| |
Collapse
|
8
|
Murthy PR, Munsif S, Zhang JC, Li WZ. Influence of CeO 2 and ZrO 2 on the Thermal Stability and Catalytic Activity of SBA-15-Supported Pd Catalysts for CO Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Palle Ramana Murthy
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sehrish Munsif
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing-Cai Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-Zhen Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Cui K, Zhou C, Zhang B, Zhang L, Liu Y, Hao S, Tang X, Huang Y, Yu J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-β Bioassay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33937-33947. [PMID: 34279896 DOI: 10.1021/acsami.1c09760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we fabricated a novel origami paper-based analytical device (oPAD) assisted by the nanostructuring effect of in situ Pd decoration of Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres, functionalized with their strongly enhanced electrocatalytic properties to realize an electrochemical and visual signal readout system in oPAD, for highly sensitive detection of amyloid-β (Aβ). The CuCo-CeO2-Pd nanospheres were introduced as an enhanced "signal transducer layer" on account of the electron transfer acceleration caused by catalyzing glucose to produce H2O2 for differential pulse voltammetry signal readout and further 3,3'5,5'-tetramethylbenzidine (TMB) oxidation for colorimetric analysis. Meanwhile, for achieving superior performance of the proposed oPAD, in situ growth of urchin-like gold nanoparticles (Au NPs) onto cellulose fibers was adopted to improve "the recognition layer" in favor of immobilizing antibodies for targeting Aβ through specific antigen-antibody interactions. Combined with the delicate design of oPAD, exhibiting actuation of the conversion procedure between hydrophobicity and hydrophilicity on paper tabs in the assay process, the oPAD successfully enabled sensitive diagnosis of Aβ in a linear range from 1.0 pM to 100 nM with a limit of detection of 0.05 pM (S/N = 3) for electrochemical detection, providing a reliable strategy for quantifying the Aβ protein in clinical applications.
Collapse
Affiliation(s)
- Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Bowei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Shiji Hao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaohong Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
10
|
Wang C, Zhang X, Li J, Qi X, Guo Z, Wei H, Chu H. Gold Nanoparticles on Nanosheets Derived from Layered Rare-Earth Hydroxides for Catalytic Glycerol-to-Lactic Acid Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:522-530. [PMID: 33393772 DOI: 10.1021/acsami.0c17732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered rare-earth hydroxides (LREHs), as a series of special lamellar compounds having a similar structure to layered double hydroxides (LDHs), are becoming a new type of catalyst materials. In this study, we have prepared a series of uniform LREH (RE = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) nanosheets through a reverse-microemulsion method. After deposition-precipitation of HAuCl4 and calcination, supported Au catalysts (denoted as Au/LREO) were subsequently obtained. The catalytic properties of all the derived Au/LREO catalysts were evaluated by aerobic conversion of glycerol to lactic acid under mild conditions (90 °C, 1 atm). Among these catalysts, Au/LPrO displays the best performances, including the highest glycerol conversion, lactic acid, and C3 product selectivity. Both the catalytic activities and the characterizations of the structure of Au/LREO indicate that the kind of rare-earth ions plays a key role in determining the Au particle size and its valence state and reducibility, which are the important factors correlated with the catalytic activities in glycerol conversion. In fact, the three features of gold particles, the extra-small size (∼3 nm), high content of Au0 species, and high reducibility, are the essential prerequisites for achieving the superior catalytic performance of Au/LPrO.
Collapse
Affiliation(s)
- Congying Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xueqiong Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Jiefei Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xingyue Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Ziyang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|