1
|
Wang B, Wang H, Bao Y, Ahmad W, Geng W, Ying Y, Xu W. Sustainable Materials Enabled Terahertz Functional Devices. NANO-MICRO LETTERS 2025; 17:212. [PMID: 40214928 PMCID: PMC11992292 DOI: 10.1007/s40820-025-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Terahertz (THz) devices, owing to their distinctive optical properties, have achieved myriad applications in diverse domains including wireless communication, medical imaging therapy, hazardous substance detection, and environmental governance. Concurrently, to mitigate the environmental impact of electronic waste generated by traditional materials, sustainable materials-based THz functional devices are being explored for further research by taking advantages of their eco-friendliness, cost-effective, enhanced safety, robust biodegradability and biocompatibility. This review focuses on the origins and distinctive biological structures of sustainable materials as well as succinctly elucidates the latest applications in THz functional device fabrication, including wireless communication devices, macromolecule detection sensors, environment monitoring sensors, and biomedical therapeutic devices. We further highlight recent applications of sustainable materials-based THz functional devices in hazardous substance detection, protein-based macromolecule detection, and environmental monitoring. Besides, this review explores the developmental prospects of integrating sustainable materials with THz functional devices, presenting their potential applications in the future.
Collapse
Affiliation(s)
- Baoning Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Haolan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Wenhui Geng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China
| | - Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
2
|
Nasiri H, Abbasian K, Salahandish M, Elyasi SN. Sensitive surface plasmon resonance biosensor by optimized carboxylate functionalized carbon nanotubes/chitosan for amlodipine detecting. Talanta 2024; 276:126249. [PMID: 38743970 DOI: 10.1016/j.talanta.2024.126249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The adoption of biophotonic sensing technologies holds significant promise for application in health care and biomedical industries in all aspects of human life. Then, this piece of writing employs the powerful effective medium theory and FDTD simulation to anticipate the most favorable state and plasmonic attributes of a magnificent nanocomposite, comprising carboxylate functionalized carbon nanotubes and chitosan (CS). Furthermore, it thoroughly explores the exhibited surface plasmon resonance behaviors of this composite versus the quantity of CS variation. Subsequently, enlightening simulations are conducted on the nanocomposite with a delicate layer and a modified golden structure integrating as a composite. The intricate simulations eventually unveil an optimal combination to pave the way for crafting an exceptional specific biosensor that far surpasses its counterpart as a mere Au thin layer in terms of excellence. The proposed biosensor demonstrated linear behavior across a wide range from 0.01 μM to 150 μM and achieved a detection limit of 10 nM, with a sensitivity of 134◦RIU-1.
Collapse
Affiliation(s)
- Hassan Nasiri
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Karim Abbasian
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Mohammad Salahandish
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Ortiz-Martínez M, Molina González JA, Ramírez García G, de Luna Bugallo A, Justo Guerrero MA, Strupiechonski EC. Enhancing Sensitivity and Selectivity in Pesticide Detection: A Review of Cutting-Edge Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1468-1484. [PMID: 38726957 DOI: 10.1002/etc.5889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 04/12/2024] [Indexed: 06/27/2024]
Abstract
The primary goal of our review was to systematically explore and compare the state-of-the-art methodologies employed in the detection of pesticides, a critical component of global food safety initiatives. New approach methods in the fields of luminescent nanosensors, chromatography, terahertz spectroscopy, and Raman spectroscopy are discussed as precise, rapid, and versatile strategies for pesticide detection in food items and agroecological samples. Luminescent nanosensors emerge as powerful tools, noted for their portability and unparalleled sensitivity and real-time monitoring capabilities. Liquid and gas chromatography coupled to spectroscopic detectors, stalwarts in the analytical chemistry field, are lauded for their precision, wide applicability, and validation in diverse regulatory environments. Terahertz spectroscopy offers unique advantages such as noninvasive testing, profound penetration depth, and bulk sample handling. Meanwhile, Raman spectroscopy stands out with its nondestructive nature, its ability to detect even trace amounts of pesticides, and its minimal requirement for sample preparation. While acknowledging the maturity and robustness of these techniques, our review underscores the importance of persistent innovation. These methodologies' significance extends beyond their present functions, highlighting their adaptability to meet ever-evolving challenges. Environ Toxicol Chem 2024;43:1468-1484. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mónica Ortiz-Martínez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México, México
- Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, México
| | - Jorge Alberto Molina González
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Gonzalo Ramírez García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Andrés de Luna Bugallo
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Manuel Alejandro Justo Guerrero
- Istituto Nanoscienze and Scuola Normale Superiore, National Enterprise for nanoScience and nanoTechnology Consiglio Nazionale della Richerche, Pisa, Italy
| | | |
Collapse
|
4
|
Pan Y, Chen F, Li Y, Yang W, Sun L, Yi Z. A carbon nanotube metamaterial sensor showing slow light properties based on double plasmon-induced transparency. Phys Chem Chem Phys 2024; 26:16096-16106. [PMID: 38780318 DOI: 10.1039/d4cp01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, we proposed a bifunctional sensor of high sensitivity and slow light based on carbon nanotubes (CNTs). An array of left semicircular ring (LSR), right semicircular ring (RSR), and circular ring (CR) resonators are utilized to form the proposed metamaterial. The proposed structure can achieve double plasmon-induced transparency (PIT) effects under the excitation of a TM-polarization wave. The double PIT originated from the destructive interference between two bright modes and a dark mode. A coupled harmonic oscillator model is used to describe the destructive interference between the two bright modes and a dark mode, and the simulation results agree well with the calculated results. Moreover, we investigate the influence of the coupling distance, period, and flare angle on the PIT spectra. The relationship between the resonant frequencies, full width at half maximum (FWHM), amplitudes, quality factors (Q), and the coupling distance is also studied. Finally, a high sensitivity of 1.02 THz RIU-1 is obtained, and the transmission performance can be maintained at a good level when the incident angle is less than 40°. Thus, the sensor can cope with situations where electromagnetic waves are not perpendicular to the structure's surface. The maximum figure of merit (FOM) can reach about 8.26 RIU-1; to verify the slow light property of the device, the slow light performance of the proposed structure is investigated, and a maximum time delay (TD) of 22.26 ps is obtained. The proposed CNT-based metamaterial can be used in electromagnetically induced transparency applications, such as sensors, optical memory devices, and flexible terahertz functional devices.
Collapse
Affiliation(s)
- Yizhao Pan
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Fang Chen
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Yuchang Li
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Wenxing Yang
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Lihui Sun
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Xie M, Zhang X, Lou F, Cheng X, Lei L. Flexible wafer-scale bifunctional metasurface based on nanoimprinting. OPTICS EXPRESS 2024; 32:20080-20091. [PMID: 38859125 DOI: 10.1364/oe.524147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Metasurfaces have demonstrated remarkable capabilities in manipulating light fields across diverse applications. However, current research tends to examine these functionalities in isolation, prompting a growing interest in integrating different functionalities within a singular metasurface device. In this paper, we propose and experimentally demonstrate a bifunctional metasurface capable of providing concealment and sensing functions simultaneously. Specifically, the proposed nanostructure effectively operates as a one-way mirror, exhibiting an average reflection rate of approximately 90% under external illumination, alongside an absorption rate of 87.9% from the opposite direction of incidence. This functionality renders it suitable for privacy-enhancing building windows. Meanwhile, this nanostructure also integrates liquid sensing capabilities boasting a sensitivity of 464 nm/RIU, which is particularly valuable for monitoring liquid-based corrosion. The experimental performance of the prepared 6-inch nanohole-patterned metasurface closely aligns with the simulations, and the utilization of flexible polyethylene terephthalate (PET) film, coupled with nanoimprint lithography technology, enables a direct and cost-effective manufacturing process that can be scaled up for widespread applications.
Collapse
|
6
|
Tang M, Zhang M, Fu Y, Chen L, Li D, Zhang H, Yang Z, Wang C, Xiu P, Wilksch JJ, Luo Y, Han J, Yang H, Wang H. Terahertz label-free detection of nicotine-induced neural cell changes and the underlying mechanisms. Biosens Bioelectron 2023; 241:115697. [PMID: 37751650 DOI: 10.1016/j.bios.2023.115697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
Nicotine exposure can lead to neurological impairments and brain tumors, and a label-free and nondestructive detection technique is urgently required by the scientific community to assess the effects of nicotine on neural cells. Herein, a terahertz (THz) time-domain attenuated total reflection (TD-ATR) spectroscopy approach is reported, by which the effects of nicotine on normal and cancerous neural cells, i.e., HEB and U87 cells, are successfully investigated in a label/stain-free and nondestructive manner. The obtained THz absorption coefficients of HEB cells exposed to low-dose nicotine and high-dose nicotine are smaller and larger, respectively, than the untreated cells. In contrast, the THz absorption coefficients of U87 cells treated by nicotine are always smaller than the untreated cells. The THz absorption coefficients can be well related to the proliferation properties (cell number and compositional changes) and morphological changes of neural cells, by which different types of neural cells are differentiated and the viabilities of neural cells treated by nicotine are reliably assessed. Collectively, this work sheds new insights on the effects of nicotine on neural cells, and provides a useful tool (THz TD-ATR spectroscopy) for the study of chemical-cell interactions.
Collapse
Affiliation(s)
- Mingjie Tang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingkun Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ying Fu
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ligang Chen
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dandan Li
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hua Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhongbo Yang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chunlei Wang
- Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jonathan J Wilksch
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Haijun Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Huabin Wang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
7
|
Bi H, Yang M, You R. Advances in terahertz metasurface graphene for biosensing and application. DISCOVER NANO 2023; 18:63. [PMID: 37091985 PMCID: PMC10105365 DOI: 10.1186/s11671-023-03814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Based on the extraordinary electromagnetic properties of terahertz waves, such as broadband, low energy, high permeability, and biometric fingerprint spectra, terahertz sensors show great application prospects in the biochemical field. However, the sensitivity of terahertz sensing technology is increasingly required by modern sensing demands. With the development of terahertz technology and functional materials, graphene-based terahertz metasurface sensors with the advantages of high sensitivity, fingerprint identification, nondestructive and anti-interference are gradually gaining attention. In addition to providing ideas for terahertz biosensors, these devices have attracted in-depth research and development by scientists. An overview of graphene-based terahertz metasurfaces and their applications in the detection of biochemical molecules is presented. This includes sensor mechanism research, graphene metasurface index evaluation, protein and nucleic acid sensors, and other chemical molecule sensing. A comparative analysis of graphene, nanomaterials, silicon, and metals to develop material-integrated metasurfaces. Furthermore, a brief summary of the main performance results of this class of devices is presented, along with suggestions for improvements to the existing shortcoming.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| | - Maosheng Yang
- School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an, 237012 China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| |
Collapse
|
8
|
Zhang X, Wu X, Xiao B, Qin J. Terahertz determination of imidacloprid in soil based on a metasurface sensor. OPTICS EXPRESS 2023; 31:37778-37788. [PMID: 38017900 DOI: 10.1364/oe.503624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Pesticides in soil are continuously one of the most studied analytes due to their environmental and human health effects. Thus the detection of pesticides in soil is an important means to control and assess soil quality. Here, we theoretically and experimentally present a novel method for the determination of imidacloprid in soil by using a metasurface sensor operating at terahertz frequencies. The metasurface shows a resonance peak at 880 GHz and the electric field at the peak is strongly localized and concentrated in the gap of split I-shaped resonator. The detection of complex refractive index shows that the position and the transmittance of resonance peak are depend on the change in the complex refractive index. The measurement of imidacloprid concentration in soil demonstrates that both the frequency shift and the transmittance change at peak increase almost linearly with the increasing of imidacloprid concentration ranging from 0.25% to 2%. In this case, the frequency shift reaches 97 GHz and the transmittance change at peak is as high as 30.9%. Our work enables the determination of imidacloprid in soil at terahertz frequencies with good reliability and high sensitivity, showing the potential application of terahertz spectroscopy in environmental monitoring.
Collapse
|
9
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
10
|
Lang T, Xiao M, Cen W. Graphene-Based Metamaterial Sensor for Pesticide Trace Detection. BIOSENSORS 2023; 13:560. [PMID: 37232921 PMCID: PMC10216411 DOI: 10.3390/bios13050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Organophosphate insecticides with broad spectrum and high efficiency make a great difference to agricultural production. The correct utilization and residue of pesticides have always been important issues of concern, and residual pesticides can accumulate and pass through the environment and food cycle, resulting in safety and health hazards to humans and animals. In particular, current detection methods are often characterized by complex operations or low sensitivity. Fortunately, using monolayer graphene as the sensing interface, the designed graphene-based metamaterial biosensor working in the 0-1 THz frequency range can achieve highly sensitive detection characterized by spectral amplitude changes. Meanwhile, the proposed biosensor has the advantages of easy operation, low cost, and quick detection. Taking phosalone as an example, its molecules can move the Fermi level of graphene with π-π stacking, and the lowest concentration of detection in this experiment is 0.01 μg/mL. This metamaterial biosensor has great potential in detecting trace pesticides, and its application in food hygiene and medicine can provide better detection services.
Collapse
Affiliation(s)
- Tingting Lang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Meiyu Xiao
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; (M.X.); (W.C.)
| | - Wenyang Cen
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; (M.X.); (W.C.)
| |
Collapse
|
11
|
Fu Y, Chen T, Chen L, Guo Y, Yang Z, Mu N, Feng H, Zhang M, Wang H. Terahertz time-domain attenuated total reflection spectroscopy integrated with a microfluidic chip. Front Bioeng Biotechnol 2023; 11:1143443. [PMID: 36994356 PMCID: PMC10040880 DOI: 10.3389/fbioe.2023.1143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The integration of a microfluidic chip into terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy is highly demanded for the accurate measurement of aqueous samples. Hitherto, however little work has been reported on this regard. Here, we demonstrate a strategy of fabricating a polydimethylsiloxane microfluidic chip (M-chip) suitable for the measurement of aqueous samples, and investigate the effects of its configuration, particularly the cavity depth of the M-chip on THz spectra. By measuring pure water, we find that the Fresnel formulae of two-interface model should be applied to analyze the THz spectral data when the depth is smaller than 210 μm, but the Fresnel formula of one-interface model can be applied when the depth is no less than 210 μm. We further validate this by measuring physiological solution and protein solution. This work can help promote the application of THz TD-ATR spectroscopy in the study of aqueous biological samples.
Collapse
Affiliation(s)
- Ying Fu
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ligang Chen
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yuansen Guo
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhongbo Yang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingkun Zhang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| | - Huabin Wang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| |
Collapse
|
12
|
Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Tabassum S, Nayemuzzaman SK, Kala M, Kumar Mishra A, Mishra SK. Metasurfaces for Sensing Applications: Gas, Bio and Chemical. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186896. [PMID: 36146243 PMCID: PMC9504383 DOI: 10.3390/s22186896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/11/2023]
Abstract
Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial and metastructure-based various sensors.
Collapse
Affiliation(s)
- Shawana Tabassum
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - SK Nayemuzzaman
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Manish Kala
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Akhilesh Kumar Mishra
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Satyendra Kumar Mishra
- Centre of Optics and Photonics (COPL), University of Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
14
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
15
|
Zhang Y, Xu Y, Liu H, Sun B. Ultrahigh sensitivity nitrogen-doping carbon nanotubes-based metamaterial-free flexible terahertz sensing platform for insecticides detection. Food Chem 2022; 394:133467. [PMID: 35717347 DOI: 10.1016/j.foodchem.2022.133467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
With the rapid advances in terahertz (THz) spectroscopy, metamaterial-free THz sensors have been of importance due to efficient cost, high sensitivity and overcoming the limited tunability of the optical constants of metals. Here, a metamaterial-free and flexible THz sensor based on nitrogen-doping carbon nanotubes (N-CNTs) coupled with signal-enhancing Au NPs was proposed for detecting nereistoxin-related insecticides (NRIs). Sensitivity and selectivity for NRIs detection have been realized over the range of 3.3-100 μg/L with good linear fitting (R2 ≥ 0.9003) and LOD was 1.33 μg/L. Accuracy was validated by the recovery rates of 105.87-109.75% of NRI in spiked food-matrix sample. These results indicated the developed signal-enhancing THz method, validated by LC-MS/MS, exhibited high sensitivity and simplicity detection, which has noteworthy potential for applications in food safety and environment monitoring.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yuqing Xu
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
16
|
Zhou T, Chen S, Zhang X, Zhang X, Hu H, Wang Y. Electromagnetically induced transparency based on a carbon nanotube film terahertz metasurface. OPTICS EXPRESS 2022; 30:15436-15445. [PMID: 35473263 DOI: 10.1364/oe.457768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In this work, we present a study of bright-bright mode electromagnetically induced transparency based on carbon nanotube films terahertz metasurface consisting of an array of two asymmetric split rings. Under the excitation of terahertz wave, the electromagnetically induced transparency window can be obviously observed. The simulation results agree with the theoretical results. The formation mechanism of the transparent window in bright-bright mode electromagnetically induced transparency is further analyzed. Moreover, the sensing performance of the proposed terahertz metasurface is investigated and the sensitivity can reach to 320 GHz/RIU. To verify the slow light characteristics of the device, the group delay of the terahertz metasurface is calculated and the value is 2.12 ps. The proposed metasurface device and the design strategies provide opportunities for electromagnetically induced transparency applications, such as sensors, optical memories, and flexible terahertz functional devices.
Collapse
|
17
|
Liao Y, Zhang M, Tang M, Chen L, Li X, Liu Z, Wang H. Label-free study on the effect of a bioactive constituent on glioma cells in vitro using terahertz ATR spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2380-2392. [PMID: 35519255 PMCID: PMC9045931 DOI: 10.1364/boe.452952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
In this work, we report that the effect of bioactive constituent on living glioma cells can be evaluated using terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy in a label-free, non-invasive, and fast manner. The measured THz absorption coefficient of human glioma cells (U87) in cell culture media increases with ginsenoside Rg3 (G-Rg3) concentration in the range from 0 to 50 µM, which can be interpreted as that G-Rg3 deteriorated the cellular state. This is supported either by the cell growth inhibition rate measured using a conventional cell viability test kit or by the cellular morphological changes observed with fluorescence microscopy. These results verify the effectiveness of using the THz TD-ATR spectroscopy to detect the action of G-Rg3 on glioma cells in vitro. The demonstrated technique thus opens a new route to assessing the efficacy of bioactive constituents on cells or helping screen cell-targeted drugs.
Collapse
Affiliation(s)
- Yunsheng Liao
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Equal contributors
| | - Mingkun Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Equal contributors
| | - Mingjie Tang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ligang Chen
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xueqin Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongdong Liu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Huabin Wang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
18
|
Juraij K, Chingakham C, Manaf O, Sagitha P, Suni V, Sajith V, Sujith A. Polyurethane/multi‐walled carbon nanotube electrospun composite membrane for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kandiyil Juraij
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Chinglenthoiba Chingakham
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
- Department of Chemistry National University of Singapore Singapore Singapore
| | - Olongal Manaf
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Paroly Sagitha
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vasudevan Suni
- Inorganic and Bio‐inorganic Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vandana Sajith
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
| | - Athiyanathil Sujith
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
19
|
Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol 2022; 104:103201. [DOI: 10.1016/j.jtherbio.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
20
|
Matyushkin Y, Danilov S, Moskotin M, Fedorov G, Bochin A, Gorbenko I, Kachorovskii V, Ganichev S. Carbon nanotubes for polarization sensitive terahertz plasmonic interferometry. OPTICS EXPRESS 2021; 29:37189-37199. [PMID: 34808796 DOI: 10.1364/oe.435416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We report on helicity sensitive photovoltaic terahertz radiation response of a carbon nanotube made in a configuration of a field-effect transistor. We find that the magnitude of the rectified voltage is different for clockwise and anticlockwise circularly polarized radiation. We demonstrate that this effect is a fingerprint of the plasma waves interference in the transistor channel. We also find that the presence of the helicity- and phase-sensitive interference part of the photovoltaic response is a universal phenomenon which is obtained in the systems of different dimensionality with different single-particle spectrum. Its magnitude is a characteristic of the plasma wave decay length. This opens up a wide avenue for applications in the area of plasmonic interferometry.
Collapse
|
21
|
Li W, Miao Y, Guo T, Zhang K, Yao J. Nb 2CT x MXene-tilted fiber Bragg grating optofluidic system based on photothermal spectroscopy for pesticide detection. BIOMEDICAL OPTICS EXPRESS 2021; 12:7051-7063. [PMID: 34858699 PMCID: PMC8606125 DOI: 10.1364/boe.442602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 05/30/2023]
Abstract
An optofluidic system based on photothermal spectroscopy is proposed, which combines molecular photothermal effect with Nb2CTx MXene-tilted fiber Bragg grating (TFBG) for the detection of organophosphorus pesticides (OPs) with temperature compensated. Under the irradiation of excitation light, the photothermal effect of OPs produces a detectable change in the refractive index of the sample, and the concentration of chlorpyrifos can be quantified using TFBG. The Nb2CTx MXene coated TFBG allow more molecules to be absorbed on the surface of TFBG, which enhances the interaction between light and matter, and improves the sensitivity of detection. The temperature compensation is performed by referring to the core mode of TFBG, thereby eliminating the influence of ambient temperature on the photothermal detection. The experimental results show that the sensitivity reaches 1.8 pm/ppm with a limit of detection (LOD) of 0.35 ppm, and the obtained temperature compensation coefficient is 4.84 ppm/°C. This photothermal biosensor has the advantages of low LOD, temperature compensation and real-time online monitoring, making it a good candidate in medicine, chemistry and environmental monitoring.
Collapse
Affiliation(s)
- Wenjie Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yinping Miao
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Kialiang Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianquan Yao
- College of Precision Instruments and Opto-Electronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W. Molecule-Specific Terahertz Biosensors Based on an Aptamer Hydrogel-Functionalized Metamaterial for Sensitive Assays in Aqueous Environments. ACS Sens 2021; 6:1884-1890. [PMID: 33979138 DOI: 10.1021/acssensors.1c00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metamaterial-inspired terahertz (THz) biosensors are devoted to developing high-sensitivity and label-free biosensing strategies. However, most meaningful molecular signals are obscured by the strong THz absorption of solvent water. Most reported THz biosensors require the tested samples to be tediously dried or replaced with a low-absorption medium, which impairs the original bioactivity and the distribution homogeneity of targets. As described in this proposed strategy, a molecule-specific THz biosensor was fabricated from an aptamer hydrogel-functionalized THz metamaterial. Benefitting from the strong interaction with the localized electric field of the metamaterial, trace thrombin-induced variations in the hydration state of the hydrogel can be sensitively probed, which was investigated experimentally and theoretically. The optimized THz biosensor exhibited remarkable specificity for actual serum sample assays and excellent sensitivity, with a relatively low detection limit of 0.40 pM in the human serum matrix. The proposed strategy could serve as a model system to develop various molecule-specific THz biosensors for aqueous molecule sensing.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, Chongqing University Cancer Hospital, Chongqing 400038, China
| | - Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
23
|
Xing Q, Song C, Wang C, Xie Y, Huang S, Wang F, Lei Y, Yuan X, Zhang C, Mu L, Huang Y, Xiu F, Yan H. Tunable Terahertz Plasmons in Graphite Thin Films. PHYSICAL REVIEW LETTERS 2021; 126:147401. [PMID: 33891459 DOI: 10.1103/physrevlett.126.147401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.
Collapse
Affiliation(s)
- Qiaoxia Xing
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Chaoyu Song
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Chong Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuangang Xie
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Fanjie Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuchen Lei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xiang Yuan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Cheng Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Lei Mu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuan Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|