1
|
Chen X, Volkova I, Wang Y, Zhang Z, Nijhuis CA. Gradual Change between Coherent and Incoherent Tunneling Regimes Induced by Polarizable Halide Substituents in Molecular Tunnel Junctions. J Am Chem Soc 2024; 146:23356-23364. [PMID: 39115108 PMCID: PMC11345807 DOI: 10.1021/jacs.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
This paper describes a gradual transition of charge transport across molecular junctions from coherent to incoherent tunneling by increasing the number and polarizability of halide substituents of phenyl-terminated aliphatic monolayers of the form S(CH2)10OPhXn, X = F, Cl, Br, or I; n = 0, 1, 2, 3, or 5. In contrast to earlier work where incoherent tunneling was induced by introducing redox-active groups or increasing the molecular length, we show that increasing the polarizability, while keeping the organization of the monolayer structure unaltered, results in a gradual change in the mechanism of tunneling of charge carriers where the activation energy increased from 23 meV for n = 0 (associated with coherent tunneling) to 257 meV for n = 5 with X = Br (associated with incoherent tunneling). Interestingly, this increase in incoherent tunneling rate with polarizability resulted in an improved molecular diode performance. Our findings suggest an avenue to improve the electronic function of molecular devices by introducing polarizable atoms.
Collapse
Affiliation(s)
- Xiaoping Chen
- College
of Chemistry, Chemical Engineering and Environment, Fujian Provincial
Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ira Volkova
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yulong Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Centre
for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology and Molecules Centre, Faculty of
Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
López-Ortiz M, Zamora RA, Giannotti MI, Gorostiza P. The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance. ACS NANO 2023; 17:20334-20344. [PMID: 37797170 DOI: 10.1021/acsnano.3c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
3
|
Zhang Y, Liu L, Tu B, Cui B, Guo J, Zhao X, Wang J, Yan Y. An artificial synapse based on molecular junctions. Nat Commun 2023; 14:247. [PMID: 36646674 PMCID: PMC9842743 DOI: 10.1038/s41467-023-35817-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Shrinking the size of the electronic synapse to molecular length-scale, for example, an artificial synapse directly fabricated by using individual or monolayer molecules, is important for maximizing the integration density, reducing the energy consumption, and enabling functionalities not easily achieved by other synaptic materials. Here, we show that the conductance of the self-assembled peptide molecule monolayer could be dynamically modulated by placing electrical biases, enabling us to implement basic synaptic functions. Both short-term plasticity (e.g., paired-pulse facilitation) and long-term plasticity (e.g., spike-timing-dependent plasticity) are demonstrated in a single molecular synapse. The dynamic current response is due to a combination of both chemical gating and coordination effects between Ag+ and hosting groups within peptides which adjusts the electron hopping rate through the molecular junction. In the end, based on the nonlinearity and short-term synaptic characteristics, the molecular synapses are utilized as reservoirs for waveform recognition with 100% accuracy at a small mask length.
Collapse
Affiliation(s)
- Yuchun Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Tu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bin Cui
- School of Physics, Shandong University, Jinan, 250100, China
| | - Jiahui Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyu Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
5
|
Gupta N, Wilkinson EA, Karuppannan SK, Bailey L, Vilan A, Zhang Z, Qi DC, Tadich A, Tuite EM, Pike AR, Tucker JHR, Nijhuis CA. Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions. J Am Chem Soc 2021; 143:20309-20319. [PMID: 34826219 PMCID: PMC8662729 DOI: 10.1021/jacs.1c09549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions.
Collapse
Affiliation(s)
- Nipun
Kumar Gupta
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Edward A. Wilkinson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Senthil Kumar Karuppannan
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lily Bailey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dong-Chen Qi
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Anton Tadich
- Australian
Synchrotron Clayton, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Eimer M. Tuite
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - Andrew R. Pike
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - James H. R. Tucker
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Tian L, Martine E, Yu X, Hu W. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12223-12233. [PMID: 34606290 DOI: 10.1021/acs.langmuir.1c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Collapse
Affiliation(s)
- Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
7
|
Grabarek A, Walczak Ł, Cyganik P. Odd-Even Effect in Peptide SAMs-Competition of Secondary Structure and Molecule-Substrate Interaction. J Phys Chem B 2021; 125:10964-10971. [PMID: 34554757 PMCID: PMC8503877 DOI: 10.1021/acs.jpcb.1c06625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Peptide-based self-assembled
monolayers (SAMs) are well known to
be crucial for biocompatible surface formation on inorganic substrates
applied for implants, biosensors, or tissue engineering. Moreover,
recently these bioinspired nanostructures are also considered
particularly interesting for molecular electronics applications due
to their surprisingly high conductance and thickness-independent capacitance,
which make them a very promising element of organic field-effect transistors
(OFETs). Our structural analysis conducted for a series of prototypic
homooligopeptides based on glycine (Gly) with cysteine (Cys) as a
substrate bonding group chemisorbed on Au and Ag metal substrates
(GlynCys/Au(Ag), n =
1–9) exhibits the formation by these monolayers secondary structure
close to β-sheet conformation with pronounced odd–even structural effect strongly affecting packing density and conformation
of molecules in the monolayer, which depend on the length of molecules
and the type of metal substrate. Our experiments indicate that the
origin of these structural effects is related to the either cooperative
or competitive relationship between the type of secondary structure
formed by these molecules and the directional character of their chemical
bonding to the metal substrate. The current analysis opens up the
opportunity for the rational design of these biologically inspired
nanostructures, which is crucial both for mentioned biological and
electronic applications.
Collapse
Affiliation(s)
- Agnieszka Grabarek
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Łukasz Walczak
- Science & Research Division, PREVAC sp. z o.o., Raciborska 61, 44-362 Rogow, Poland
| | - Piotr Cyganik
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| |
Collapse
|
8
|
Zhang H, Zhang P, Zhao J, Liu Y, Huang Y, Huang H, Yang C, Zhao Y, Wu K, Fu X, Jin S, Hou Y, Ding Z, Yuan R, Roeffaers MBJ, Zhong S, Long J. The Hole‐Tunneling Heterojunction of Hematite‐Based Photoanodes Accelerates Photosynthetic Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongwen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Pu Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yuan Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yi Huang
- Laboratory of Optics, Terahertz and Nondestructive Testing College of Mechanical Engineering and Automation Fuzhou University Fuzhou 350116 P. R. China
| | - Haowei Huang
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS) KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Chen Yang
- College of Chemical Engineering Fuzhou University Fuzhou 350108 P. R. China
| | - Yibo Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Xianliang Fu
- College of Chemistry and Material Science Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Maarten B. J. Roeffaers
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS) KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing College of Mechanical Engineering and Automation Fuzhou University Fuzhou 350116 P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
9
|
Zhang H, Zhang P, Zhao J, Liu Y, Huang Y, Huang H, Yang C, Zhao Y, Wu K, Fu X, Jin S, Hou Y, Ding Z, Yuan R, Roeffaers MBJ, Zhong S, Long J. The Hole-Tunneling Heterojunction of Hematite-Based Photoanodes Accelerates Photosynthetic Reaction. Angew Chem Int Ed Engl 2021; 60:16009-16018. [PMID: 33908140 DOI: 10.1002/anie.202102983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Indexed: 11/11/2022]
Abstract
Single-atom metal-insulator-semiconductor (SMIS) heterojunctions based on Sn-doped Fe2 O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2 O3 overlayer with chemical grafting of a RuOx hole-collector for efficient CO2 -to-syngas conversion. The RuOx -Al2 O3 -SF photoanode with a 3.0 nm thick Al2 O3 overlayer gave a >5-fold-enhanced IPCE value of 52.0 % under 370 nm light irradiation at 1.2 V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2 O3 /SF NRs interface. Accumulation of long-lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single-atom RuOx species, accelerating the O2 -evolving reaction kinetics. The maximal CO-evolution rate of 265.3 mmol g-1 h-1 was achieved by integration of double SIMS-3 photoanodes with a single-atom Ni-doped graphene CO2 -reduction-catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450 nm light irradiation.
Collapse
Affiliation(s)
- Hongwen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Pu Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuan Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Huang
- Laboratory of Optics, Terahertz and Nondestructive Testing, College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Haowei Huang
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Chen Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yibo Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Xianliang Fu
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Maarten B J Roeffaers
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing, College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
10
|
Roemer M, Keaveney ST, Proschogo N. Synthesis of Long-Chain Alkanoyl Benzenes by an Aluminum(III) Chloride-Catalyzed Destannylative Acylation Reaction. J Org Chem 2021; 86:9007-9022. [PMID: 34152767 DOI: 10.1021/acs.joc.1c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper describes the facile synthesis of haloaryl compounds with long-chain alkanoyl substituents by the destannylative acylation of haloaryls bearing tri-n-butyltin (Bu3Sn) substituents. The method allows the synthesis of many important synthons for novel functional materials in a highly efficient manner. The halo-tri-n-butyltin benzenes are obtained by the lithium-halogen exchange of commercially available bis-haloarenes and the subsequent reaction with Bu3SnCl. Under typical Friedel-Crafts conditions, i.e., the presence of an acid chloride and AlCl3, the haloaryls are acylated through destannylation. The reactions proceed fast (<5 min) at low temperatures and thus are compatible with aromatic halogen substituents. Furthermore, the method is applicable to para-, meta-, and ortho-substitution and larger systems, as demonstrated for biphenyls. The generated tin byproducts were efficiently removed by trapping with silica/KF filtration, and most long-chain haloaryls were obtained chromatography-free. Molecular structures of several products were determined by X-ray single-crystal diffraction, and the crystal packing was investigated by mapping Hirshfeld surfaces onto individual molecules. A feasible reaction mechanism for the destannylative acylation reaction is proposed and supported through density functional theory (DFT) calculations. DFT results in combination with NMR-scale control experiments unambiguously demonstrate the importance of the tin substituent as a leaving group, which enables the acylation.
Collapse
Affiliation(s)
- Max Roemer
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sinead T Keaveney
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Nguyen QV, Frisbie CD. Hopping Conductance in Molecular Wires Exhibits a Large Heavy-Atom Kinetic Isotope Effect. J Am Chem Soc 2021; 143:2638-2643. [PMID: 33587628 DOI: 10.1021/jacs.0c12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report a large kinetic isotope effect (KIE) for intramolecular charge transport in π-conjugated oligophenyleneimine (OPI) molecules connected to Au electrodes. 13C and 15N substitution on the imine bonds produces a conductance KIE of ∼2.7 per labeled atom in long OPI wires >4 nm in length, far larger than typical heavy-atom KIEs for chemical reactions. In contrast, isotopic labeling in shorter OPI wires <4 nm does not produce a conductance KIE, consistent with a direct tunneling mechanism. Temperature-dependent measurements reveal that conductance for a long 15N-substituted OPI wire is activated, and we propose that the exceptionally large conductance KIEs imply a thermally assisted, through-barrier polaron tunneling mechanism. In general, observation of large conductance KIEs opens up considerable opportunities for understanding microscopic conduction mechanisms in π-conjugated molecules.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|