1
|
Ebrahim MZA, Rahmanian V, Abdelmigeed M, Pirzada T, Khan SA. Designing a MOF-functionalized Nanofibrous Aerogel via Vapor-Phase Synthesis. SMALL METHODS 2024; 8:e2400596. [PMID: 38822424 PMCID: PMC11671861 DOI: 10.1002/smtd.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/03/2024]
Abstract
Designing 3D mechanically robust and high-surface-area substrates for uniform and high-density deposition of metal-organic frameworks (MOFs) provide a promising strategy to enhance surface accessibility and application of these highly functional materials. Nanofibrous aerogel (NFA) with its highly porous self-supported structure composed of interconnected nanofibrous network offers an ideal platform in this regard. Herein, a facile one-pot strategy is introduced, which utilizes direct deposition of MOF on the nanofibrous surface of the NFAs. NFAs are synthesized using electrospun polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) polymer nanofibers containing zinc acetate (Zn(Ac)2), which are subjected to freeze drying and thermal treatment. The latter converts Zn(Ac)2 to zinc oxide (ZnO), providing the sites for MOF growth while also adding mechanical integrity to the NFAs through cyclization of the PAN. Exposure of the NFA to the vapor-phase of organic ligand, 2-methylimidazole (2-MeIm) enables in situ growth of zeolitic imidazolate framework-8 (ZIF-8) MOF on the NFA. ZIF-8 loading on the NFAs is further improved by more than tenfold by synthesizing ZnO nanorods/protrusions on the nanofibers, which enables more sites for MOF growth. These findings underscore a significant advancement in designing MOF-based hybrid aerogels, offering a streamlined approach for their use in diverse applications, from catalysis to sensing and water purification.
Collapse
Affiliation(s)
| | - Vahid Rahmanian
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Mai Abdelmigeed
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Tahira Pirzada
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Saad A. Khan
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
2
|
Ahmed FU, Sharma S, Purkayastha DD. Buoyancy-Assisted Fabrication of Liquid Diode: Janus Nanofibrous Membrane for Efficient Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42641-42659. [PMID: 39087275 DOI: 10.1021/acsami.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The pressing need for effective methods to separate oil and water in oily wastewater has spurred the development of innovative solutions. This work presents the creation and evaluation of a Janus nanofibrous membrane, also known as the Liquid Diode, developed using electrospinning (e-spinning) and buoyancy-assisted hydrothermal techniques. The membrane features a unique structure: one side is composed of PVDF nanofibers embedded with a GO/TiO2 composite, exhibiting in-air superhydrophobic and superoleophilic properties, while the reverse side consists of PVDF nanofibers with a ZnO nanorod array, demonstrating in-air superhydrophilic and underwater (UW) superoleophobic properties. This distinct asymmetric wettability enables the membrane to effectively separate both water-in-oil (w-in-o) and oil-in-water (o-in-w) emulsions, achieving an impressive liquid flux and separation efficiency (SEff). The in-air superhydrophobic side of the Janus nanofibrous membrane achieves a maximum oil flux (Fo) of 3506 ± 250 L m-2 h-1, while the in-air superhydrophilic side achieves a maximum water flux (Fw) of 1837 ± 150 L m-2 h-1, with SEff exceeding 98% for both sides. Furthermore, the Janus nanofibrous membrane maintained reliable mechanical stability after 10 cycles of sandpaper abrasion test and demonstrated excellent chemical stability when subjected to acidic, alkaline, cold water and hot water conditions for 24 h. These properties, combined with its ability in breaking down of organic contaminants (98% ± 2% in 210 min) and pharmaceutical contaminants (97% ± 2% in 210 min) under visible light, highlight its photocatalytic potential. Additionally, the membrane's antifouling and antibacterial properties suggest long-term and sustainable use in wastewater treatment applications. The synergistic combination of these superior properties positions the Janus nanofibrous membrane as a promising solution for addressing complex challenges in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Fayez U Ahmed
- Department of Physics, National Institute of Technology Nagaland, Chumukedima-797103, India
| | - Sushant Sharma
- LCPME, UMR 7564, Université de Lorraine -CNRS, 405 Rue de Vandoeuvre, 54600, Villers-lès-Nancy, France
| | | |
Collapse
|
3
|
Li Y, Jia M, Shi B, Wang S, Luan X, Hao Z, Wang Y. Robust and flexible polyester fiber membrane with under-liquid dual superlyophobicity for efficient on-demand oil-water separation. Int J Biol Macromol 2024; 262:130138. [PMID: 38354930 DOI: 10.1016/j.ijbiomac.2024.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Functional materials with under-liquid dual superlyophobicity have generated a great deal of concern from researchers due to their switchable separation ability oil-water mixtures and emulsions. Conceptually, under-liquid dual superlyophobicity is a Cassie state achievable under-liquid through the synergy of an under-liquid double lyophobic surface and the construction of a highly rough surface. However, obtaining an under-liquid dual superlyophobic surface remains difficult due to its thermodynamic contradiction and complex surface composition. Herein, we successfully prepared a functional coating by modifying the mixture of cellulose nanocrystals (CNCs) and nano-TiO2 with perfluorooctanoic acid (PFOA) via a simple method, then obtained a polyester fiber membrane with under-liquid dual superlyophobicity by roll coating method. The surface wettability of the polyester (PET) membrane was altered, transforming it from the original under-water oleophobic/under-oil superhydrophilic state to the under-water superoleophobic/under-oil superhydrophobic state after coated. The resulting membrane was applied to separate oil and water on-demand. The coated PET membrane exhibited high separation efficiency (>99 %) and high separation flux, effectively separating immiscible oil-water systems as well as oil-in-water and water-in-oil emulsions. The coated PET membrane also demonstrated the ability to perform alternate separation of oil-water mixtures through wetting, washing, and rewetting cycles, with repeated processes up to 10 times without significant reduction in separation efficiency. Furthermore, compared with the previous works, our approach offers a simpler and more convenient method for constructing under-liquid dual superlyophobic surface, making it more suitable for continuous corporate production. This study may provide inspiration for the production and application in large-scale of under-liquid dual superlyophobic membranes.
Collapse
Affiliation(s)
- Yulei Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengke Jia
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoying Shi
- Tianjin Tianshi College, Tianjin 301700, China.
| | - Songlin Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiayu Luan
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhanhua Hao
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yufeng Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
5
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Xu CL, Luo Y, Liu S, Wang G, Chen C, Lv G, Cheng Z, Yang Z, Xu X, Cai J, Zhang X, Yang G, Wu J, Zhang S. Dual Superlyophobic Materials for Under-Liquid Microfluid Manipulation, Immiscible Solvent Separation, and CO 2 Blockage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19761-19772. [PMID: 37022321 DOI: 10.1021/acsami.3c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oily water purification, immiscible solvent separation, sensitive microreaction, and CO2 blockage are of great interest because of their importance for the environment and demands of controllable microreactions. However, one specific material that can meet all the requirements has yet to be reported. Herein, we developed a simple environment-benign method to prepare specific dual superlyophobic materials to solve the problems mentioned earlier. The dual superlyophobic materials can maintain their dual superoleophobicity in various oil/water systems, and no additional surface modifications were required when the oil/water system was changed. Moreover, the materials can be used to separate oil/water mixtures with separation efficiencies greater than 99.50% even after 40 separation cycles and separate immiscible organic solvents with efficiencies over than 99.25% after 20 cycles. Separations of meal waste oily water at 60 °C and crude oil/water were also successfully performed. The materials can be further applied to manipulate and block CO2 bubbles under liquid. The materials can also act as a platform for microdrop manipulation/microreaction under liquid.
Collapse
Affiliation(s)
- Chang-Lian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Yitong Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Siyu Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Xiaohong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Chengdu 611130, China
| |
Collapse
|
7
|
Watanabe T, Nakagawa K, Gonzales RR, Kitagawa T, Matsuoka A, Kamio E, Yoshioka T, Matsuyama H. Influence of structure of porous polyketone microfiltration membranes on separation of water‐in‐oil emulsions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Zhou H, Niu H, Wang H, Lin T. Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chem Rev 2023; 123:663-700. [PMID: 36537354 DOI: 10.1021/acs.chemrev.2c00486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The research on superwetting surfaces with a self-healing function against various damages has progressed rapidly in the recent decade. They are expected to be an effective approach to increasing the durability and application robustness of superwetting materials. Various methods and material systems have been developed to prepare self-healing superwetting surfaces, some of which mimic natural superwetting surfaces. However, they still face challenges, such as being workable only for specific damages, external stimulation to trigger the healing process, and poor self-healing ability in the water, marine, or biological systems. There is a lack of fundamental understanding as well. This article comprehensively reviews self-healing superwetting surfaces, including their fabrication strategies, essential rules for materials design, and self-healing properties. Self-healing triggered by different external stimuli is summarized. The potential applications of self-healing superwetting surfaces are highlighted. This article consists of four main sections: (1) the functional surfaces with various superwetting properties, (2) natural self-healing superwetting surfaces (i.e., plants, insects, and creatures) and their healing mechanism, (3) recent research development in various self-healing superwetting surfaces, their preparation, wetting properties in the air or liquid media, and healing mechanism, and (4) the prospects including existing challenges, our views and potential solutions to the challenges, and future research directions.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Haitao Niu
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong Victoria 3216, Australia.,Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tong Lin
- Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
9
|
Wu J, Zhang X, Yan C, Li J, Zhou L, Yin X, He Y, Zhao Y, Liu M. A bioinspired strategy to construct dual-superlyophobic PPMB membrane for switchable oil/water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Tian S, He Y, Zhang L, Li S, Bai Y, Wang Y, Wu J, Yu J, Guo X. CNTs/TiO2- loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Yang Y, Guo Z, Liu W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204624. [PMID: 36192169 DOI: 10.1002/smll.202204624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Since superwetting surfaces have emerged, on-demand oil/water separation materials serve as a new direction for meeting practical needs. This new separation mode uses a single porous material to allow oil-removing and water-removing to be achieved alternately. In this review, the fundamentals of wettability are systematically summarized in oil/water separation. Most importantly, the two states, bioinspired surface and intelligent surface, are summarized for on-demand oil/water separation. Specifically, bioinspired surfaces include micro/nanostructures, bioinspired chemistry, Janus-featured surfaces, and dual-superlyophobic surfaces that these superwetting materials can possess asymmetric wettability in one structure system or opposite underliquid wettability by prewetting. Furthermore, an intelligent surface can be adopted by various triggers such as pH, thermal and photo stimuli, etc., to control wettability for switchable oil/water separation reversibly, expressing a thought beyond nature to realize innovative oil/water separation by external stimuli. Remarkably, this review also discusses the advantages of all the materials mentioned above, expanding the separation scope from the on-demand oil/water mixtures to the multiphase immiscible liquid-liquid mixtures. Finally, the prospects of on-demand oil/water separation materials are also concluded.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
12
|
An K, Sui Y, Wang Y, Qing Y, Long C, Liu X, Shang Y, Liu C. Synergistic control of wetting resistance and corrosion inhibition by cerium to enhance corrosion resistance of superhydrophobic coating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhou H, Li Q, Zhang X, Niu H. Controllable Fabrication of Durable, Underliquid Superlyophobic Surfaces Based on the Lyophilic-Lyophobic Balance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11962-11971. [PMID: 36137259 DOI: 10.1021/acs.langmuir.2c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surfaces possessing desirable underliquid special wettability, particularly underliquid dual superlyophobicity, have a high potential for extensive applications. However, there is still a lack of controllable preparation strategies to regulate the underliquid wettability via balancing the underliquid lyophilicity-lyophobicity. Herein, we develop a nanocomposite coating system comprising silica nanoparticles (NPs), glycerol propoxylate triglycidyl ether (GPTE), and fluorinated alkyl silane (FAS) to obtain controllable underliquid special wettability surfaces. FAS is the vital factor in guiding the preparation of the surface coating with expected underliquid superwettability. Increasing the FAS content results in a tendency toward underwater superoleophobicity/underoil hydrophilicity to underwater oleophilicity/underoil superhydrophobicity. Significantly, the underliquid dual superlyophobic surface can be achieved when an appropriate FAS content is located. After the coating treatment, the fabric exhibits superamphiphilicity in air and superlyophobicity in liquid (i.e., exhibiting both underwater superoleophobicity and underoil superhydrophobicity). The coating also exhibits an adaptable antioil fouling ability and high durability against harsh environments. Furthermore, oil/water separation based on the underliquid dual superlyophobicity of coated fabrics is successfully demonstrated. Our work proposes a new fabrication principle for the design of underliquid special wettability surfaces and offers broad applications, such as switchable oil/water separation, antibiofouling, liquid manipulation, and smart textiles.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles & Clothing, Qingdao University/State Key Laboratory for Biofibers and Eco-textiles/Collaborative Innovation Centre for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
- Jiangsu New Vision Advanced Functional Fiber Innovation Center, Wujiang District, Suzhou, Jiangsu Province 215228, China
| | - Qingshuo Li
- College of Textiles & Clothing, Qingdao University/State Key Laboratory for Biofibers and Eco-textiles/Collaborative Innovation Centre for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Xiaoyu Zhang
- College of Textiles & Clothing, Qingdao University/State Key Laboratory for Biofibers and Eco-textiles/Collaborative Innovation Centre for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Haitao Niu
- College of Textiles & Clothing, Qingdao University/State Key Laboratory for Biofibers and Eco-textiles/Collaborative Innovation Centre for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
- Jiangsu New Vision Advanced Functional Fiber Innovation Center, Wujiang District, Suzhou, Jiangsu Province 215228, China
| |
Collapse
|
14
|
Hollow fiber composite membranes engineered via the combination of “anionic crosslinking and in-situ biomineralization” for dye removal. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kang Y, Chen J, Feng S, Zhou H, Zhou F, Low ZX, Zhong Z, Xing W. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wetting-induced superlyophobic polyacrylonitrile membranes: From reversible wettability to switchable on-demand emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Wang W, Kang Y, Cui C, Lv X, Wang Z, Wang B, Tan Y, Jiao S, Pang G. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfone nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Xiang B, Shi G, Mu P, Li J. Eco-friendly WBF/PAN nanofiber composite membrane for efficient separation various surfactant-stabilized oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Sun Q, Xiang B, Mu P, Li J. Green Preparation of a Carboxymethyl Cellulose-Coated Membrane for Highly Efficient Separation of Crude Oil-In-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7067-7076. [PMID: 35617663 DOI: 10.1021/acs.langmuir.2c00834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing high-performance membranes is an extremely significant strategy to combat increasing severe oil pollution. However, most of the previously reported superwettable membranes have been inevitably involved with the use of toxic solvents and complicated preparation processes. In addition, most of them lacked the capacity of separating crude oil-in-water emulsions. Herein, a facile and green strategy is employed to fabricate a polytetrafluoroethylene (PTFE) membrane with a mixed suspension of PDA@ZIF-8 and carboxymethyl cellulose (CMC) using water as a solvent via the vacuum filtration method. Combining hydrophilic property with micro-nano-roughness, the CMC-PDA@ZIF-8-coated PTFE membrane (CPZP membrane) exhibits excellent underwater superoleophobicity. More importantly, the separation efficiency of various surfactant-stabilized oil-in-water emulsions including crude oil/water emulsion is higher than 99.2% with a flux up to 1306.5 L m-2 h-1, and the separation performance remains nearly the same after 10 cycles. Moreover, outstanding underwater superoleophobic and self-cleaning properties are maintained after long-distance sandpaper abrasion and multiple bending tests. Meanwhile, its exceptional separation performance is still maintained in harsh environments (3.5 wt % NaCl, 1 M HCl, 60 °C hot water) even after immersing it for 24 h. Therefore, this green-prepared and high-performance membrane has tremendous application prospects in treating oily wastewater.
Collapse
Affiliation(s)
- Qing Sun
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bin Xiang
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
20
|
Designing durable self-cleaning nanofiltration membranes via sol-gel assisted interfacial polymerization for textile wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
|
22
|
Zou D, Kim HW, Jeon SM, Lee YM. Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO2 particles for enhanced oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
An K, Zhang X, Qing Y, Sui Y, Long C, Yang Z, Wang L, Liu C. One-step fabrication of robust superhydrophobic cerium-based nickel foam for oil-water separation and photocatalytic degradation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Zheng Y, Zhang C, Wang L, Long X, Zhang J, Zuo Y, Jiao F. Tannic acid-based complex coating modified membranes with photo-Fenton self-cleaning property for sustainable oil-in-water emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Qu M, Pang Y, Li J, Wang R, He D, Luo Z, Shi F, Peng L, He J. Eco-friendly superwettable functionalized-fabric with pH-bidirectional responsiveness for controllable oil-water and multi-organic components separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Zhang R, Guo Z. Facile preparation of a superamphiphilic nitrocellulose membrane enabling on-demand and energy-efficient separation of oil/water mixtures and emulsions by prewetting. Biomater Sci 2021; 9:5559-5568. [PMID: 34236061 DOI: 10.1039/d1bm00521a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A membrane with superamphiphilicity presents many advantages in various oil/water separation applications due to its switchable wettability by prewetting. However, it is still a great challenge to switch between two types of superwettability on a single cellulose surface by switching between different liquid media. Herein, in order to obtain in-air superamphiphilic and under-liquid dual superlyophobic membranes, dopamine-modified nitrocellulose membranes (with a pore size of 0.22 μm) were prepared via a facile immersion modification approach. Under 0.08 MPa, the as-prepared NC membrane switches wettability by prewetting to achieve on-demand oil/water separation, and the separation efficiency is more than 99.9%. Futhermore, the membrane prepared in this work can also be applied to high-efficiency on-demand separation of surfactant-stabilized emulsions with a separation efficiency greater than 99.0%. Hence, the PDA-modified NC membrane is a promising controllable oil/water separation material in terms of repeatable cycles, separation efficiency, flux, prominent long-term durability and anti-oil fouling.
Collapse
Affiliation(s)
- Rong Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
27
|
Liao XL, Sun DX, Cao S, Zhang N, Huang T, Lei YZ, Wang Y. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125926. [PMID: 34492858 DOI: 10.1016/j.jhazmat.2021.125926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient oil/water separation ability is a prerequisite for the actual application of the membranes in oily sewage treatment, which is closely related to the surface feature and the porous structure of the membranes. In this work, the electrospun poly(vinylidene fluoride) (PVDF) porous fibers were firstly fabricated through blend-electrospinning with poly(vinyl pyrrolidone) (PVP) and then treating in distilled water. The results showed that the fibers exhibited the sponge-like porous structure, and a few PVP was reserved in the fibers due to the relatively good interaction between PVDF and PVP. The fibrous membrane exhibited high porosity, super-wettability with freely switchable super-lipophilicity and super-hydrophilicity. The oil adsorption capacities as well as the oil and water fluxes were measured, and the oil adsorption capacities were varied in the range of 22.7-76.0 g/g, and oil and water fluxes were 54,737.3 and 56,869.9 L/(m2h), respectively. Specifically, the PVDF porous fibrous membranes showed excellent separation abilities and they could highly efficiently separate oil from oil-in-water emulsions or separate water from water-in-oil emulsions, accompanied with the extremely high water or oil flux. This work confirms that the PVDF membranes composed of the porous fibers can be used in wastewater treatment.
Collapse
Affiliation(s)
- Xiao-Lei Liao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - De-Xiang Sun
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Cao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
28
|
Wang J, Zhong J, Cui N, Zhang M, Zhu X, Pang J. Mediator effect-assisted dual superlyophobic surface: PPY@Ni–Co LDH@PEEK textile for high performance separation of oil/water mixtures and immiscible organic liquids. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Qu M, Pang Y, Li J, Wang R, Luo Z, He D, Sun W, Peng L, He J. Efficient separation of oil‐in‐water emulsion based on a superhydrophilic and underwater superoleophobic polyvinylidene fluoride membrane. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mengnan Qu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Yajie Pang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Jiehui Li
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Rong Wang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Zhanxia Luo
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Dan He
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Wenchao Sun
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Lei Peng
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Jinmei He
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
30
|
Mai VC, Hou S, Pillai PR, Lim TT, Duan H. Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures. ACS NANO 2021; 15:6977-6986. [PMID: 33754693 DOI: 10.1021/acsnano.0c10871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixtures of immiscible liquids are commonly found in the scenarios of environmental protection and many industrial applications. Compared to widely explored water-oil mixtures, small differences in the surface energy of organic liquids, especially for those in multiphase mixtures, make their separation a formidable challenge. Here, a family of versatile coatings based on the reactions between plant polyphenols and 3-aminopropyl triethoxysilane is introduced to regulate the wetting behavior of substrates by forming stable liquid-infused interfaces. The key finding is that when a coated substrate is prewetted with a liquid forming a stable liquid-infused interface, it becomes repellent to any other immiscible liquids. This phenomenon is independent of the surface energy of the initial wetting liquid. This exclusive wetting behavior can lead to distinctive repellency toward almost any liquid by the infusion of an immiscible liquid, even if the difference of surface energy and dielectric constant of a liquid pair is as small as 2.0 mJ m-2 and 1.8, respectively, resulting in universal and switchable omni-repellency. Of particular importance is that the as-prepared coating makes possible the on-demand separation of multiphase liquid mixtures by both continuous membrane filtration and static absorption, presenting a green and cost-effective approach to addressing this major environmental and industrial challenge.
Collapse
Affiliation(s)
- Van Cuong Mai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Praveen Raghuram Pillai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Teik-Thye Lim
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|