1
|
Bao X, Yan B, Yu Y, Xu B, Cui L, Zhou M, Wang Q, Wang P. A facile cellulose finishing strategy through in-situ growth of sliver-doped manganese dioxide assisted by amine-quinone for improving indoor living quality. Int J Biol Macromol 2024; 267:131448. [PMID: 38593901 DOI: 10.1016/j.ijbiomac.2024.131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.
Collapse
Affiliation(s)
- Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
2
|
Jung WT, Jang HS, Lee SM, Hong WG, Bae YJ, Lee HS, Kim BH. High-response room-temperature NO 2 gas sensor fabricated with thermally reduced graphene oxide-coated commercial cotton fabric. Heliyon 2024; 10:e24425. [PMID: 38293488 PMCID: PMC10826734 DOI: 10.1016/j.heliyon.2024.e24425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Electronic textile-based gas sensors with a high response for NO2 gas were fabricated using reduced graphene oxide (rGO)-coated commercial cotton fabric (rGOC). Graphene oxide (GO) was coated on cotton fabric by simply dipping the cotton into a GO solution. To investigate the relationship between the degree of reduction and the sensing response, the GO-coated fabrics were thermally reduced at various temperatures (190, 200, 300, and 400 °C). The change in the amount of oxygen functional groups on the rGOCs was observed by x-ray photoelectron spectroscopy, Raman spectroscopy, and x-ray diffraction patterns. The maximum sensing response of 45.90 % at 10 ppm of NO2 gas at room temperature was exhibited by the rGOC treated at 190 °C, which was the lowest heat-treatment temperature. The high response comes from the greater amount of oxygen functional groups compared to other rGOC samples, and the tubular structure of the cotton.
Collapse
Affiliation(s)
- Won Taek Jung
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyun-Seok Jang
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sang Moon Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Won G. Hong
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Young Jin Bae
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyo Seon Lee
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byung Hoon Kim
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
- Intelligent Sensor Convergence Research Center, Incheon National University, Incheon, 22012, Republic of Korea
- Institute of Basic Science, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
3
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
4
|
Song SW, Wang QM, Yu M, Tian ZY, Yang ZY. Enabling Quick Response to Nitrogen Dioxide at Room Temperature and Limit of Detection to Ppb Level by Heavily n-Doped Graphene Hybrid Transistor. Molecules 2023; 28:5054. [PMID: 37446716 DOI: 10.3390/molecules28135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sensitive detection of nitrogen dioxide (NO2) is of significance in many areas for health and environmental protections. In this work, we developed an efficient NO2 sensor that can respond within seconds at room temperature, and the limit of detection (LOD) is as low as 100 ppb. Coating cyano-substituted poly(p-phenylene vinylene) (CN-PPV) films on graphene (G) layers can dope G sheets effectively to a heavy n state. The influences of solution concentrations and annealing temperatures on the n-doping effect were investigated in detail. The CN-PPV-G transistors fabricated with the optimized parameters demonstrate active sensing abilities toward NO2. The n-doping state of CN-PPV-G is reduced dramatically by NO2, which is a strong p-doping compound. Upon exposure to 25 ppm of NO2, our CN-PPV-G sensors react in 10 s, indicating it is almost an immediate response. LOD is determined as low as 100 ppb. The ultrahigh responding speed and low LOD are not affected in dry air. Furthermore, cycling use of our sensors can be realized through simple annealing. The superior features shown by our CN-PPV-G sensors are highly desired in the applications of monitoring the level of NO2 in situ and setting immediate alarms. Our results also suggest that transfer curves of transistors can react very promptly to the stimulus of target gas and, thus, are very promising in the development of fast-response sensing devices although the response values may not reach maximum as a tradeoff.
Collapse
Affiliation(s)
- Si-Wei Song
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Qian-Min Wang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao Yu
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhi-Yuan Tian
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhi-Yong Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
5
|
Xue Y, Wang Z, Dutta A, Chen X, Gao P, Li R, Yan J, Niu G, Wang Y, Du S, Cheng H, Yang L. Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 465:142774. [PMID: 37484163 PMCID: PMC10361402 DOI: 10.1016/j.cej.2023.142774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wearable electronics with applications in healthcare, human-machine interfaces, and robotics often explore complex manufacturing procedures and are not disposable. Although the use of conductive pencil patterns on cellulose paper provides inexpensive, disposable sensors, they have limited stretchability and are easily affected by variations in the ambient environment. This work presents the combination of pencil-on-paper with the hydrophobic fumed SiO2 (Hf-SiO2) coating and stretchable kirigami structures from laser cutting to prepare a superhydrophobic, stretchable pencil-on-paper multifunctional sensing platform. The resulting sensor exhibits a large response to NO2 gas at elevated temperature from self-heating, which is minimally affected by the variations in the ambient temperature and relative humidity, as well as mechanical deformations such as bending and stretching states. The integrated temperature sensor and electrodes with the sensing platform can accurately detect temperature and electrophysiological signals to alert for adverse thermal effects and cardiopulmonary diseases. The thermal therapy and electrical stimulation provided by the platform can also deliver effective means to battle against inflammation/infection and treat chronic wounds. The superhydrophobic pencil-onpaper multifunctional device platform provides a low-cost, disposable solution to disease diagnostic confirmation and early treatment for personal and population health.
Collapse
Affiliation(s)
- Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zihan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Peng Gao
- Department of Electronic Information, Hebei University of Technology, Tianjin, 300130, China
| | - Runze Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jiayi Yan
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guangyu Niu
- Department of Architecture and Art, Hebei University of Technology, Tianjin, 300130, China
| | - Ya Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuaijie Du
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA
| | - Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
6
|
Cho C, Kim D, Lee C, Oh JH. Ultrasensitive Ionic Liquid Polymer Composites with a Convex and Wrinkled Microstructure and Their Application as Wearable Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13625-13636. [PMID: 36861378 DOI: 10.1021/acsami.2c22825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of pressure sensors with high sensitivity and effectiveness that exhibit linearity over a wide pressure range is crucial for wearable devices. In this study, we fabricated a novel ionic liquid (IL)/polymer composite with a convex and randomly wrinkled microstructure in a cost-effective and facile manner using an opaque glass and stretched polydimethylsiloxane template. The fabricated IL/polymer composite was used as the dielectric layer in a capacitive pressure sensor. The sensor exhibited a high linear sensitivity of 56.91 kPa-1 owing to the high interfacial capacitance formed by the electrical double layer of the IL/polymer composite over a relatively wide range (0-80 kPa). We also demonstrated the sensor performance for various applications such as a glove-attached sensor, sensor array, respiration monitoring mask, human pulse, blood pressure measurement, human motion detection, and a wide range of pressure sensing. It would be expected that the proposed pressure sensor has sufficient potential for use in wearable devices.
Collapse
Affiliation(s)
- Changwoo Cho
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdeahak-ro, Sangrok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dongwon Kim
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdeahak-ro, Sangrok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Chaeeun Lee
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdeahak-ro, Sangrok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Je Hoon Oh
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdeahak-ro, Sangrok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
7
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|
8
|
Shiu BC, Liu YL, Yuan QY, Lou CW, Lin JH. Preparation and Characterization of PEDOT:PSS/TiO 2 Micro/Nanofiber-Based Gas Sensors. Polymers (Basel) 2022; 14:polym14091780. [PMID: 35566945 PMCID: PMC9105644 DOI: 10.3390/polym14091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we employed electrospinning technology and in situ polymerization to prepare wearable and highly sensitive PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. PEDOT, PEDOT:PSS, and TiO2 were prepared via in situ polymerization and tested for characteristic peaks using energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR), then characterized using a scanning electron microscope (SEM), a four-point probe resistance measurement, and a gas sensor test system. The gas sensitivity was 3.46–12.06% when ethanol with a concentration between 12.5 ppm and 6250 ppm was measured; 625 ppm of ethanol was used in the gas sensitivity measurements for the PEDOT/composite conductive woven fabrics, PVP/PEDOT:PSS nanofiber membranes, and PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. The latter exhibited the highest gas sensitivity, which was 5.52% and 2.35% greater than that of the PEDOT/composite conductive woven fabrics and PVP/PEDOT:PSS nanofiber membranes, respectively. In addition, the influence of relative humidity on the performance of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors was examined. The electrical sensitivity decreased with a decrease in ethanol concentration. The gas sensitivity exhibited a linear relationship with relative humidity lower than 75%; however, when the relative humidity was higher than 75%, the gas sensitivity showed a highly non-linear correlation. The test results indicated that the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors were flexible and highly sensitive to gas, qualifying them for use as a wearable gas sensor platform at room temperature. The proposed gas sensors demonstrated vital functions and an innovative design for the development of a smart wearable device.
Collapse
Affiliation(s)
- Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Yan-Ling Liu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.-L.L.); (Q.-Y.Y.)
| | - Qian-Yu Yuan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.-L.L.); (Q.-Y.Y.)
| | - Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.-L.L.); (Q.-Y.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
- Correspondence: (C.-W.L.); (J.-H.L.)
| | - Jia-Horng Lin
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (C.-W.L.); (J.-H.L.)
| |
Collapse
|
9
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
10
|
Hong F, Huang C, Wu L, Wang M, Chen Y, She Y. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens Bioelectron 2021; 192:113489. [PMID: 34293688 DOI: 10.1016/j.bios.2021.113489] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive detection of aflatoxin B1 (AFB1) is of great significance because of its high toxicity and carcinogenesis. We propose a magnetic relaxation sensing method based on gold nanoparticles (Au NPs)-assisted triple self-assembly cascade signal amplification for highly sensitive detection of AFB1. Both AFB1 antibody and initiator DNA (iDNA) are labeled on Au NPs to form Ab-Au-iDNA probe. iDNA is enriched by Au NPs to achieve first signal amplification. Different amounts of Ab-Au-iDNA were bound with AFB1 antigen by indirect competitive immunoassay, and then hybridization chain reaction event was initiated by iDNA to produce long hybridization chain reaction products to enrich more horseradish peroxidase-streptavidin for the second signal amplification. Dopamine could be rapidly converted to polydopamine by HRP catalysis, which is used as the third signal amplification. The Fe3+ solution, providing paramagnetic ions with a strong magnetic signal, could be adsorbed by the polydopamine due to the formation of coordination bonds of phenolic hydroxyl groups with Fe3+. This effective interaction between polydopamine and Fe3+ significantly changes the transverse relaxation time signal of Fe3+ supernatant solution, which can be used as a magnetic probe for highly sensitive detection of AFB1. The sensor exhibited high specificity and sensitivity with a detection limit of 0.453 pg/mL owing to the Au NP-assisted triple self-assembly cascade signal amplification strategy. It has been successfully employed for AFB1 detection in animal feed samples with consistent results of enzyme linked immune sorbent assay and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Long Wu
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Lee SW, Lee W, Kim I, Lee D, Park D, Kim W, Park J, Lee JH, Lee G, Yoon DS. Bio-Inspired Electronic Textile Yarn-Based NO 2 Sensor Using Amyloid-Graphene Composite. ACS Sens 2021; 6:777-785. [PMID: 33253539 DOI: 10.1021/acssensors.0c01582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Graphene-based e-textile gas sensors have received significant attention as wearable electronic devices for human healthcare and environmental monitoring. Theoretically, more the attached graphene on the devices, better is the gas-sensing performance. However, it has been hampered by poor adhesion between graphene and textile platforms. Meanwhile, amyloid nanofibrils are reputed for their ability to improve adhesion between materials, including between graphene and microorganisms. Despite that fact, there has been no attempt to apply amyloid nanofibrils to fabricate graphene-based e-textiles. By biomimicking the adhesion ability of amyloid nanofibrils, herein, we developed a graphene-amyloid nanofibril hybrid e-textile yarn (RGO/amyloid nanofibril/CY) for the detection of NO2. Compared to traditional e-textile yarn, the RGO/amyloid nanofibril/CY showed better performance in response time, sensing efficiency, sensitivity, and selectivity for NO2. Last, we suggested a practical use of RGO/amyloid nanofibril/CY combined with a light-emitting diode as a wearable e-textile gas sensor.
Collapse
Affiliation(s)
- Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonseok Lee
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongsung Park
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woong Kim
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jinsung Park
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|