1
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Rippy MG, Spratt HG, Danquah MK. Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. Anal Bioanal Chem 2024; 416:4619-4634. [PMID: 38916796 DOI: 10.1007/s00216-024-05410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meredith G Rippy
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Henry G Spratt
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Michael K Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Gao S, Fan J, Cui K, Wang Z, Huang T, Tan Z, Niu C, Luo W, Chao Z. Synthesis of FeOOH/Zn(OH) 2/CoS Ferromagnetic Nanocomposites and the Enhanced Mechanism of Magnetic Field for Their Electrochemical Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308212. [PMID: 38100280 DOI: 10.1002/smll.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Indexed: 12/17/2023]
Abstract
The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .
Collapse
Affiliation(s)
- Shanqiang Gao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Kexin Cui
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihao Wang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ting Huang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zicong Tan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Chaoqun Niu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Wenbin Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zisheng Chao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
3
|
Thirumurugan A, Ramadoss A, Dhanabalan SS, Kamaraj SK, Chidhambaram N, Gobalakrishnan S, Venegas Abarzúa C, Reyes Caamaño YA, Udayabhaskar R, Morel MJ. MXene/Ferrite Magnetic Nanocomposites for Electrochemical Supercapacitor Applications. MICROMACHINES 2022; 13:1792. [PMID: 36296145 PMCID: PMC9611495 DOI: 10.3390/mi13101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
MXene has been identified as a new emerging material for various applications including energy storage, electronics, and bio-related due to its wider physicochemical characteristics. Further the formation of hybrid composites of MXene with other materials makes them interesting to utilize in multifunctional applications. The selection of magnetic nanomaterials for the formation of nanocomposite with MXene would be interesting for the utilization of magnetic characteristics along with MXene. However, the selection of the magnetic nanomaterials is important, as the magnetic characteristics of the ferrites vary with the stoichiometric composition of metal ions, particle shape and size. The selection of the electrolyte is also important for electrochemical energy storage applications, as the electrolyte could influence the electrochemical performance. Further, the external magnetic field also could influence the electrochemical performance. This review briefly discusses the synthesis method of MXene, and ferrite magnetic nanoparticles and their composite formation. We also discussed the recent progress made on the MXene/ferrite nanocomposite for potential applications in electrochemical supercapacitor applications. The possibility of magnetic field-assisted supercapacitor applications with electrolyte and electrode materials are discussed.
Collapse
Affiliation(s)
- Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar 1612178, Chile
| | - Ananthakumar Ramadoss
- Advanced Research School for Technology & Product Simulation (ARSTPS), School for Advanced Research in Polymers (SARP), Central Institute of Petrochemicals Engineering & Technology (CIPET), T.V.K. Industrial Estate, Guindy, Chennai 600032, Tamil Nadu, India
| | | | - Sathish-Kumar Kamaraj
- Tecnológico Nacional de México, Instituto Tecnológico El Llano, El Llano 20330, Mexico
| | - Natarajan Chidhambaram
- Department of Physics, Rajah Serfoji Government College (Autonomous), Bharathidasan University, Thanjavur 613005, Tamil Nadu, India
| | - Suyambrakasam Gobalakrishnan
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Deemed to be University, Kumaracoil 629180, Tamil Nadu, India
| | | | | | - Rednam Udayabhaskar
- Instituto de Investigaciónes Científicasy Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile
| | - Mauricio J. Morel
- Instituto de Investigaciónes Científicasy Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile
| |
Collapse
|
4
|
Pham TN, Dinh NX, Tien VM, Ong VH, Das R, Nguyen TL, Tran QH, Tran DT, Vu DL, Le AT. Advances in magnetic field-assisted electrolyte's physicochemical properties and electrokinetic parameters: A case study on the response ability of chloramphenicol on Fe 3O 4@carbon spheres-based electrochemical nanosensor. Anal Chim Acta 2022; 1229:340398. [PMID: 36156214 DOI: 10.1016/j.aca.2022.340398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Despite the utilization of external magnetic field (MF) in promoting the intrinsic unique features of magnetic nanomaterials in many different applications has been reported, however the origin of MF-dependent electrochemical behaviors as well as the electrochemical response of analytes at the electrode in sensor applications is still not clear. In this report, the influence of MF on the electrolyte's physicochemical properties (polarization, mass transport, charge/electron transfer) and electrode's properties (conductivity, morphology, surface area, interaction, adsorption capability, electrocatalytic ability) was thoroughly investigated. Herein, the working electrode surface was modified with carbon spheres (CSs), magnetic nanoparticles (Fe3O4NPs), and their nanocomposites (Fe3O4@CSs), respectively. Then, they were directly used to enhance the electrochemical characteristics and response-ability of chloramphenicol (CAP). More interestingly, a series of various kinetic parameters related to the diffusion-controlled process of K3[Fe(CN)6]/K4[Fe(CN)6)] and the adsorption-controlled process of CAP were calculated at the bare electrode and the modified electrodes with and without the presence of MF. These parameters not only exhibit the crucial role of the modification of electrode surface with the proposed materials but also show positive impacts of the presence of external MF. Besides, the mechanism and hypothesis for the enhancements were proposed and discussed in detail, further demonstrating the development potential of using Fe3O4@CS nanocomposites with MF assistant for advanced energy, environmental, and sensor related-applications.
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam.
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Van Manh Tien
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Van Hoang Ong
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; University of Transport Technology, Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam
| | - Raja Das
- Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Thi Lan Nguyen
- International Training Institute for Materials Science (ITIMS) and Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Hanoi, Viet Nam
| | - Quang Huy Tran
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Dang Thanh Tran
- Graduate University of Science and Technology (GUST) & Institute for Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Dinh Lam Vu
- Graduate University of Science and Technology (GUST) & Institute for Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam.
| |
Collapse
|
5
|
Shi Y, Qu Y, Tan H, Sun L, Sun C, Fan K, Hu J, Wang K, Zhang Y. RGO-loaded double phase Mo-doped NiS for enhanced battery-type energy storage in hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Liang W, Yang W, Sakib S, Zhitomirsky I. Magnetic CuFe 2O 4 Nanoparticles with Pseudocapacitive Properties for Electrical Energy Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165313. [PMID: 36014550 PMCID: PMC9413230 DOI: 10.3390/molecules27165313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
This investigation is motivated by increasing interest in the development of magnetically ordered pseudocapacitors (MOPC), which exhibit interesting magnetocapacitive effects. Here, advanced pseudocapacitive properties of magnetic CuFe2O4 nanoparticles in negative potential range are reported, suggesting that CuFe2O4 is a promising MOPC and advanced negative electrode material for supercapacitors. A high capacitance of 2.76 F cm-2 is achieved at a low electrode resistance in a relatively large potential window of 0.8 V. The cyclic voltammograms and galvanostatic charge-discharge data show nearly ideal pseudocapacitive behavior. Good electrochemical performance is achieved at a high active mass loading due to the use of chelating molecules of ammonium salt of purpuric acid (ASPA) as a co-dispersant for CuFe2O4 nanoparticles and conductive multiwalled carbon nanotube (MCNT) additives. The adsorption of ASPA on different materials is linked to structural features of ASPA, which allows for different interaction and adsorption mechanisms. The combination of advanced magnetic and pseudocapacitive properties in a negative potential range in a single MOPC material provides a platform for various effects related to the influence of pseudocapacitive/magnetic properties on magnetic/pseudocapacitive behavior.
Collapse
|
7
|
Liang Z, Tian W, Liu Y, Du Y, Zhang W, Lin L, Chen M, Cao D. Preparation of Co
3
O
4
Electrodes with Different Morphologies for the Investigation of Magnetic Response in Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhiwei Liang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wensheng Tian
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuan Liu
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wenxin Zhang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Lihua Lin
- Department of Physics Fuzhou University Fuzhou 350002 P.R.China
| | - Mingming Chen
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Dawei Cao
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| |
Collapse
|
8
|
Shetgaonkar SS, Salkar AV, Morajkar PP. Advances in Electrochemical and Catalytic Performance of Nanostructured FeCo 2 O 4 and Its Composites. Chem Asian J 2021; 16:2871-2895. [PMID: 34375014 DOI: 10.1002/asia.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Indexed: 11/06/2022]
Abstract
It is well established that the excessive and uncontrolled use of fossil fuels and organic chemicals have put a risk to the earth's environment and the life that sustains within it. Carbon-free, sustainable, alternative energy technologies have therefore become the prime focus of current research. Smart inorganic materials have emerged as the potential solution to suffice energy needs and remediate the organic pollutants discharged to the environment. One such promising, versatile material is FeCo2 O4 which has gained immense research interest in the present decade due to its high efficiency and performance in energy and environmental applications. Innovative material design strategies involving the interplay of nanostructured morphology, chemical composition, redox surface states, and defect engineering have significantly enhanced both electrochemical and catalytic properties of FeCo2 O4 . Therefore, this review article aims to provide the first-ever comprehensive account of the latest research and developments in design-synthesis strategies, characterization techniques, and applications of nanostructured FeCo2 O4 and its composites in various electrochemical as well as catalytic applications. A detailed account of the nanostructured FeCo2 O4 and its composites in various energy storage and conversion devices such as supercapacitors (SCs), batteries, and fuel cells has been presented. Furthermore, a special section has been devoted to highlight the role of FeCo2 O4 in enhancing the sluggish reaction kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in water splitting application. This review also highlights the role of nanostructured FeCo2 O4 in photocatalytic waste water treatment, gas sensing, and dual-phase membrane technologies wherein FeCo2 O4 has demonstrated promising performance.
Collapse
Affiliation(s)
| | - Akshay V Salkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| |
Collapse
|