1
|
Sain S, Chowdhury S, Maity S, Maity G, Roy SS. Sputtered thin film deposited laser induced graphene based novel micro-supercapacitor device for energy storage application. Sci Rep 2024; 14:16289. [PMID: 39009606 PMCID: PMC11251010 DOI: 10.1038/s41598-024-62192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 07/17/2024] Open
Abstract
Pioneering flexible micro-supercapacitors, designed for exceptional energy and power density, transcend conventional storage limitations. Interdigitated electrodes (IDEs) based on laser-induced graphene (LIG), augmented with metal-oxide modifiers, harness synergies with layered graphene to achieve superior capacitance. This study presents a novel one-step process for sputtered plasma deposition of HfO2, resulting in enhanced supercapacitance performance. Introducing LIG-HfO2 micro-supercapacitor (MSC) devices with varied oxygen flow rates further boosts supercapacitance performance by introducing oxygen functional groups. FESEM investigations demonstrate uniform coating of HfO2 on LIG fibers through sputtering. Specific capacitance measurements reveal 6.4 mF/cm2 at 5 mV/s and 4.5 mF/cm2 at a current density of 0.04 mA/cm2. The LIG-HfO2 devices exhibit outstanding supercapacitor performance, boasting at least a fourfold increase over pristine LIG. Moreover, stability testing indicates a high retention rate of 97% over 5000 cycles, ensuring practical real-time applications.
Collapse
Affiliation(s)
- Sourav Sain
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India
| | - Suman Chowdhury
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Sayantan Maity
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India
| | - Gurupada Maity
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India
| | - Susanta Sinha Roy
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| |
Collapse
|
2
|
Wu Y, Yuan W, Wang P, Wu X, Chen J, Shi Y, Ma Q, Luo D, Chen Z, Yu A. Conformal Engineering of Both Electrodes Toward High-Performance Flexible Quasi-Solid-State Zn-Ion Micro-Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308021. [PMID: 38561969 PMCID: PMC11200085 DOI: 10.1002/advs.202308021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Indexed: 04/04/2024]
Abstract
The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the "tip effect" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.
Collapse
Affiliation(s)
- Yaopeng Wu
- School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhou510640China
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Wei Yuan
- School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Pei Wang
- School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Xuyang Wu
- School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Jinghong Chen
- School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Yu Shi
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Qianyi Ma
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Dan Luo
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Zhongwei Chen
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Aiping Yu
- Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
| |
Collapse
|
3
|
Wang S, Zheng S, Shi X, Das P, Li L, Zhu Y, Lu Y, Feng X, Wu ZS. Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly. Nat Commun 2024; 15:2850. [PMID: 38565855 PMCID: PMC10987489 DOI: 10.1038/s41467-024-47216-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Accurately placing very small amounts of electrolyte on tiny micro-supercapacitors (MSCs) arrays in close proximity is a major challenge. This difficulty hinders the development of densely-compact monolithically integrated MSCs (MIMSCs). To overcome this grand challenge, we demonstrate a controllable electrolyte directed assembly strategy for precise isolation of densely-packed MSCs at micron scale, achieving scalable production of MIMSCs with ultrahigh areal number density and output voltage. We fabricate a patterned adhesive surface across MIMSCs, that induce electrolyte directed assembly on 10,000 highly adhesive MSC regions, achieving a 100 µm-scale spatial separation between each electrolyte droplet within seconds. The resultant MIMSCs achieve an areal number density of 210 cells cm-2 and a high areal voltage of 555 V cm-2. Further, cycling the MIMSCs at 190 V over 9000 times manifests no performance degradation. A seamlessly integrated system of ultracompact wirelessly-chargeable MIMSCs is also demonstrated to show its practicality and versatile applicability.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany.
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany.
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
4
|
Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications. Mikrochim Acta 2023; 190:40. [PMID: 36585475 PMCID: PMC9803761 DOI: 10.1007/s00604-022-05610-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper. The developed strategy relies on soaking the paper in a 0.1 M sodium tetraborate solution (borax) prior to the laser processing. Borax acts as a fire-retardant agent, thus allowing the laser processing of sensitive substrates that other way would be easily destroyed under the high-energy beam. LIG on paper exhibiting low sheet resistance (30 Ω sq-1) and improved electrode/electrolyte interface was obtained by the proposed method. When used as microsupercapacitor electrodes, this laser-induced graphene resulted in specific capacitances of 4.6 mF cm-2 (0.015 mA cm-2). Furthermore, the devices exhibit excellent cycling stability (> 10,000 cycles at 0.5 mA cm-2) and good mechanical properties. By connecting the devices in series and parallel, it was also possible to control the voltage and energy delivered by the system. Thus, paper-based LIG-MSC can be used as energy storage devices for flexible, low-cost, and portable electronics. Additionally, due to their flexible design and architecture, they can be easily adapted to other circuits and applications with different power requirements.
Collapse
|
5
|
Liu H, Sun Z, Chen Y, Zhang W, Chen X, Wong CP. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS NANO 2022; 16:10088-10129. [PMID: 35786945 DOI: 10.1021/acsnano.2c02812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.
Collapse
Affiliation(s)
- Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Sun X, Chen K, Liang F, Zhi C, Xue D. Perspective on Micro-Supercapacitors. Front Chem 2022; 9:807500. [PMID: 35087793 PMCID: PMC8787070 DOI: 10.3389/fchem.2021.807500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid development of portable, wearable, and implantable electronic devices greatly stimulated the urgent demand for modern society for multifunctional and miniaturized electrochemical energy storage devices and their integrated microsystems. This article reviews material design and manufacturing technology in different micro-supercapacitors (MSCs) along with devices integrate to achieve the targets of their various applications in recent years. Finally, We also critically prospect the future development directions and challenges of MSCs.
Collapse
Affiliation(s)
- Xiangfei Sun
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Feng Liang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| |
Collapse
|