1
|
Latta ED, Storme KR, Warndorf MC, Alexander-Katz A, Borsacchi S, Martini F, Swager TM, Geppi M. Unveiling Local Dynamics of a Triptycene-Based Porous Polymer by Solid-State NMR. Macromolecules 2024; 57:11152-11165. [PMID: 40417054 PMCID: PMC12101615 DOI: 10.1021/acs.macromol.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Membrane-based technologies for gas separation and capture are promising low-energy alternatives to the most common energy-consuming processes such as distillation and absorption. In this frame, porous polymers are attracting considerable interest, but issues related to a trade-off between permeability and selectivity as well as to the long-term stability of the membrane performances need to be overcome. To this end, the study of local dynamics is crucial as it directly correlates with the transport and separation characteristics of polymer-based membranes while also shedding light on plasticization and physical aging phenomena. This work presents a comprehensive characterization of the dynamic properties of a triptycene-based porous polymer with potential application in membrane-based gas separation technology by means of molecular dynamics (MD) simulations and solid-state NMR (SSNMR). The investigated polymer has triptycene-based structural repeating units bearing t-butyl groups that are connected by perfluorinated biphenyl repeats. The combination of different SSNMR variable temperature experiments including measurements of 1H, 13C, and 19F spin-spin and spin-lattice relaxation times, 1H-13C and 19F-13C dipolar chemical shift correlation experiments, and 2H experiments provided selective and detailed information on the molecular motions involving the t-butyl, triptycene, and perfluorinated biphenyl groups. A synergistic analysis of the acquired data, employing theoretical dynamic models and comparisons with MD simulations and calculated potential energy scans (PES), has enabled the determination of motion parameters, including activation energies and correlation times. This approach also yielded insights into the motion amplitudes and geometry. These findings can be valuable for future research aimed at elucidating the molecular origins of membrane performance, not only for the polymer under investigation but also for similar polymer-based membranes.
Collapse
Affiliation(s)
- Elisa Della Latta
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Kayla R. Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Molly C. Warndorf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Silvia Borsacchi
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche (CNR-ICCOM), 56124 Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
| | - Francesca Martini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche (CNR-ICCOM), 56124 Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche (CNR-ICCOM), 56124 Pisa, Italy
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
2
|
Wang X, Jin S, Liu Z. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries. Chem Commun (Camb) 2024; 60:5369-5390. [PMID: 38687504 DOI: 10.1039/d4cc01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Solid-state electrolytes (SSEs) are the key materials in the new generation of all-solid-state lithium ion/metal batteries. Metal-organic frameworks (MOFs) are ideal materials for developing solid electrolytes because of their structural diversity and porous properties. However, there are several significant issues and obstacles involved, such as lower ion conductivity, a smaller ion transport number, a narrower electrochemical stability window and poor interface contact. In this review, a comprehensive analysis and summary of the unique ion-conducting behavior of MOF-based electrolytes in rechargeable batteries are presented, and the different design principles of MOF-based SSEs are classified and emphasized. Accordingly, four design principles for achieving these MOF-based SSEs are presented and the influence of SSEs combined with MOFs on the electrochemical performance of the batteries is described. Finally, the challenges in the application of MOF materials in lithium ion/metal batteries are explored, and directions for future research on MOF-based electrolytes are proposed. This review will deepen the understanding of MOF-based electrolytes and promote the development of high-performance solid-state lithium ion/metal batteries. This review not only provides theoretical guidance for research on new MOF-based SSE systems, but also contributes to further development of MOFs applied to rechargeable batteries.
Collapse
Affiliation(s)
- Xin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Sheng Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
3
|
Zhu Y, Lao Z, Zhang M, Hou T, Xiao X, Piao Z, Lu G, Han Z, Gao R, Nie L, Wu X, Song Y, Ji C, Wang J, Zhou G. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries. Nat Commun 2024; 15:3914. [PMID: 38724546 PMCID: PMC11082227 DOI: 10.1038/s41467-024-48078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Solid polymer electrolytes exhibit enhanced Li+ conductivity when plasticized with highly dielectric solvents such as N,N-dimethylformamide (DMF). However, the application of DMF-containing electrolytes in solid-state batteries is hindered by poor cycle life caused by continuous DMF degradation at the anode surface and the resulting unstable solid-electrolyte interphase. Here we report a composite polymer electrolyte with a rationally designed Hofmann-DMF coordination complex to address this issue. DMF is engineered on Hofmann frameworks as tethered ligands to construct a locally DMF-rich interface which promotes Li+ conduction through a ligand-assisted transport mechanism. A high ionic conductivity of 6.5 × 10-4 S cm-1 is achieved at room temperature. We demonstrate that the composite electrolyte effectively reduces the free shuttling and subsequent decomposition of DMF. The locally solvent-tethered electrolyte cycles stably for over 6000 h at 0.1 mA cm-2 in Li | |Li symmetric cell. When paired with sulfurized polyacrylonitrile cathodes, the full cell exhibits a prolonged cycle life of 1000 cycles at 1 C. This work will facilitate the development of practical polymer-based electrolytes with high ionic conductivity and long cycle life.
Collapse
Affiliation(s)
- Yanfei Zhu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Zhoujie Lao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Tingzheng Hou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China.
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Gongxun Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Zhiyuan Han
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Lu Nie
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Yanze Song
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Chaoyuan Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Jian Wang
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China.
| |
Collapse
|
4
|
Wang H, Huang W, Rao R, Zhu J, Chen H, Liu H, Li J, Li Q, Bai M, Wang X, Wang X, Liu T, Amine K, Wang Z. A Fluoride-Rich Solid-Like Electrolyte Stabilizing Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313135. [PMID: 38306967 DOI: 10.1002/adma.202313135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
To address the problems associated with Li metal anodes, a fluoride-rich solid-like electrolyte (SLE) that combines the benefits of solid-state and liquid electrolytes is presented. Its unique triflate-group-enhanced frame channels facilitate the formation of a functional inorganic-rich solid electrolyte interphase (SEI), which not only improves the reversibility and interfacial charge transfer of Li anodes but also ensures uniform and compact Li deposition. Furthermore, these triflate groups contribute to the decoupling of Li+ and provide hopping sites for rapid Li+ transport, enabling a high room-temperature ionic conductivity of 1.1 mS cm-1 and a low activation energy of 0.17 eV, making it comparable to conventional liquid electrolytes. Consequently, Li symmetric cells using such SLE achieve extremely stable plating/stripping cycling over 3500 h at 0.5 mA cm-2 and support a high critical current up to 2 mA cm-2. The assembled Li||LiFePO4 solid-like batteries exhibit exceptional cyclability for over 1 year and a half, even outperforming liquid cells. Additionally, high-voltage cylindrical cells and high-capacity pouch cells are demonstrated, corroborating much simpler processibility in battery assembly compared to all-solid-state batteries.
Collapse
Affiliation(s)
- Huashan Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Weiyuan Huang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ruijun Rao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Jiacheng Zhu
- Laboratory for Advanced Materials and Electron Microscopy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huige Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Haoyu Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jiashuai Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Qiufen Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Mengxi Bai
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xuefeng Wang
- Laboratory for Advanced Materials and Electron Microscopy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ziqi Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
5
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
6
|
Bould J, Londesborough MGS, Brus J, Tok O, Sanz Miguel PJ, Macías R. Simple Route to [PSH][B 9H 14] and a Contemporary Study of Its Solid-State Dynamic Behavior. Inorg Chem 2023; 62:14568-14579. [PMID: 37647567 DOI: 10.1021/acs.inorgchem.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The 1,8-bis(dimethylamino)naphthalenium ([PSH]+) decaborane salt, [PSH][B10H13], has been found to react in ethanol to form [PSH][B9H14] (1), affording a simple route to the synthesis of the arachno-nonaborate anion. This new polyhedral salt is characterized by NMR spectroscopy and X-ray diffraction. The measurement of diffusion coefficients by NMR methods demonstrates that the [PSH]+ cation and the [B9H14]- anion form ion pairs in a non-coordinating solvent such as CH2Cl2, whereas in CD3CN the formation of ion pairs was not observed. Insights into the long-known low-energy dynamic behavior, which involves the bridging and endo-terminal hydrogen atoms, are elucidated using DFT calculations. Salts [PSH][B9H14] (1) and [PSH][B9H14]·0.5CHCl3 (solvated, 1·0.5CHCl3) have also been studied by X-ray diffraction analysis. A solid-state NMR study has demonstrated that K[B9H14] and [PSH][B9H14] (1) undergo significantly different motion regimes, being a low-energy, weakly temperature-dependent process for 1, which may be ascribed to some type of low-amplitude reorientation of the whole boron cages. This process may be the mechanism for the low- to-room-temperature order-disorder hidden transition found by X-ray analysis.
Collapse
Affiliation(s)
- Jonathan Bould
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | | | - Jiři Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskéhonám. 2, Prague 162 00, Czech Republic
| | - Oleg Tok
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ramón Macías
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Chen Y, Barba-Bon A, Grüner B, Winterhalter M, Aksoyoglu MA, Pangeni S, Ashjari M, Brix K, Salluce G, Folgar-Cameán Y, Montenegro J, Nau WM. Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides. J Am Chem Soc 2023; 145:13089-13098. [PMID: 37265356 PMCID: PMC10288510 DOI: 10.1021/jacs.3c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
Collapse
Affiliation(s)
- Yao Chen
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Andrea Barba-Bon
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Bohumir Grüner
- Institute
of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | | | - M. Alphan Aksoyoglu
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Sushil Pangeni
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Maryam Ashjari
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Klaudia Brix
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Giulia Salluce
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Werner M. Nau
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
8
|
Sun Z, Liang J, Liu K, Feng X, Wu Y, Zhao Y, Liang Q, Wu J, Li H, Zhai T. Building intercalation structure for high ionic conductivity via aliovalent substitution. Sci Bull (Beijing) 2023; 68:1134-1142. [PMID: 37211492 DOI: 10.1016/j.scib.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) materials, which possess robust nanochannels, high flux and allow scalable fabrication, provide new platforms for nanofluids. Highly efficient ionic conductivity can facilitate the application of nanofluidic devices for modern energy conversion and ionic sieving. Herein, we propose a novel strategy of building an intercalation crystal structure with negative surface charge and mobile interlamellar ions via aliovalent substitution to boost ionic conductivity. The Li2xM1-xPS3 (M = Cd, Ni, Fe) crystals obtained by the solid-state reaction exhibit distinct capability of water absorption and apparant variation of interlayer spacing (from 0.67 to 1.20 nm). The assembled membranes show the ultrahigh ionic conductivity of 1.20 S/cm for Li0.5Cd0.75PS3 and 1.01 S/cm for Li0.6Ni0.7PS3. This facile strategy may inspire the research in other 2D materials with higher ionic transport performance for nanofluids.
Collapse
Affiliation(s)
- Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianing Liang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Huang J, Marshall CR, Ojha K, Shen M, Golledge S, Kadota K, McKenzie J, Fabrizio K, Mitchell JB, Khaliq F, Davenport AM, LeRoy MA, Mapile AN, Debela TT, Twight LP, Hendon CH, Brozek CK. Giant Redox Entropy in the Intercalation vs Surface Chemistry of Nanocrystal Frameworks with Confined Pores. J Am Chem Soc 2023; 145:6257-6269. [PMID: 36893341 DOI: 10.1021/jacs.2c12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Redox intercalation involves coupled ion-electron motion within host materials, finding extensive application in energy storage, electrocatalysis, sensing, and optoelectronics. Monodisperse MOF nanocrystals, compared to their bulk phases, exhibit accelerated mass transport kinetics that promote redox intercalation inside nanoconfined pores. However, nanosizing MOFs significantly increases their external surface-to-volume ratios, making the intercalation redox chemistry into MOF nanocrystals difficult to understand due to the challenge of differentiating redox sites at the exterior of MOF particles from the internal nanoconfined pores. Here, we report that Fe(1,2,3-triazolate)2 possesses an intercalation-based redox process shifted ca. 1.2 V from redox at the particle surface. Such distinct chemical environments do not appear in idealized MOF crystal structures but become magnified in MOF nanoparticles. Quartz crystal microbalance and time-of-flight secondary ion mass spectrometry combined with electrochemical studies identify the existence of a distinct and highly reversible Fe2+/Fe3+ redox event occurring within the MOF interior. Systematic manipulation of experimental parameters (e.g., film thickness, electrolyte species, solvent, and reaction temperature) reveals that this feature arises from the nanoconfined (4.54 Å) pores gating the entry of charge-compensating anions. Due to the requirement for full desolvation and reorganization of electrolyte outside the MOF particle, the anion-coupled oxidation of internal Fe2+ sites involves a giant redox entropy change (i.e., 164 J K-1 mol-1). Taken together, this study establishes a microscopic picture of ion-intercalation redox chemistry in nanoconfined environments and demonstrates the synthetic possibility of tuning electrode potentials by over a volt, with profound implications for energy capture and storage technologies.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kasinath Ojha
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Meikun Shen
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Stephen Golledge
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kentaro Kadota
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jacob McKenzie
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - James B Mitchell
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Faiqa Khaliq
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael A LeRoy
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Ashley N Mapile
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Tekalign T Debela
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Liam P Twight
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
10
|
Hou T, Xu W, Pei X, Jiang L, Yaghi OM, Persson KA. Ionic Conduction Mechanism and Design of Metal-Organic Framework Based Quasi-Solid-State Electrolytes. J Am Chem Soc 2022; 144:13446-13450. [PMID: 35700972 PMCID: PMC9377385 DOI: 10.1021/jacs.2c03710] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the theoretical and experimental investigation of two polyoxometalate-based metal-organic frameworks (MOFs), [(MnMo6)2(TFPM)]imine and [(AlMo6)2(TFPM)]imine, as quasi-solid-state electrolytes. Classical molecular dynamics coupled with quantum chemistry and grand canonical Monte Carlo are utilized to model the corresponding diffusion and ionic conduction in the two materials. Using different approximate levels of ion diffusion behavior, the primary ionic conduction mechanism was identified as solvent-assisted hopping (>77%). Detailed static and dynamic solvation structures were obtained to interpret Li+ motion with high spatial and temporal resolution. A rationally designed noninterpenetrating MOF-688(one-fold) material is proposed to achieve 6-8 times better performance (1.6-1.7 mS cm-1) than the current state-of-the-art (0.19-0.35 mS cm-1).
Collapse
Affiliation(s)
- Tingzheng Hou
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wentao Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lu Jiang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Qi X, Cai D, Wang X, Xia X, Gu C, Tu J. Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6859-6868. [PMID: 35080368 DOI: 10.1021/acsami.1c23034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOF)-based solid-like electrolytes have attracted more prospective due to the combined merits of solid-state electrolytes and liquid electrolytes. However, most MOF-based solid-like electrolytes using organic liquid electrolytes cannot fundamentally solve the safety issues of lithium-metal batteries, and the ionic conductivity and mechanical strength of the electrolytes should be further enhanced. Herein, the ionic liquid-impregnated polypropylene (PP) porous membrane with integrally distributed ZIF-8 nanoparticles is designed. The solid-like electrolyte possesses an increased ionic conductivity of 2.09 × 10-4 S cm-1 at 25 °C, lithium-ion transference number (0.45), mechanical strength, electrochemical window, and excellent nanowetted interfaces. Furthermore, the Li symmetrical cell shows excellent Li plating/stripping properties for 550 h at 0.1 mA cm-2 and 0.1 mA h cm-2. The LiFePO4/Li full battery with the solid-like electrolyte demonstrates an excellent rate capability and cycling stability with the initial discharge capacity of 157.9 mA h g-1 and a capacity retention ratio of 91.23% after 450 cycles at 0.2 C. The work offers a new avenue toward MOF-based solid-like electrolytes for high-safety lithium-metal batteries.
Collapse
Affiliation(s)
- Xinhong Qi
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Cai
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Farina M, Duff BB, Tealdi C, Pugliese A, Blanc F, Quartarone E. Li + Dynamics of Liquid Electrolytes Nanoconfined in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53986-53995. [PMID: 34751024 PMCID: PMC8603352 DOI: 10.1021/acsami.1c16214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are excellent platforms to design hybrid electrolytes for Li batteries with liquid-like transport and stability against lithium dendrites. We report on Li+ dynamics in quasi-solid electrolytes consisting in Mg-MOF-74 soaked with LiClO4-propylene carbonate (PC) and LiClO4-ethylene carbonate (EC)/dimethyl carbonate (DMC) solutions by combining studies of ion conductivity, nuclear magnetic resonance (NMR) characterization, and spin relaxometry. We investigate nanoconfinement of liquid inside MOFs to characterize the adsorption/solvation mechanism at the basis of Li+ migration in these materials. NMR supports that the liquid is nanoconfined in framework micropores, strongly interacting with their walls and that the nature of the solvent affects Li+ migration in MOFs. Contrary to the "free'' liquid electrolytes, faster ion dynamics and higher Li+ mobility take place in LiClO4-PC electrolytes when nanoconfined in MOFs demonstrating superionic conductor behavior (conductivity σrt > 0.1 mS cm-1, transport number tLi+ > 0.7). Such properties, including a more stable Li electrodeposition, make MOF-hybrid electrolytes promising for high-power and safer lithium-ion batteries.
Collapse
Affiliation(s)
- Marco Farina
- Department
of Chemistry, University of Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Benjamin B. Duff
- Department
of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 3ZD, U.K.
| | - Cristina Tealdi
- Department
of Chemistry, University of Pavia, Via Taramelli 16, Pavia 27100, Italy
- National
Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Andrea Pugliese
- Department
of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 3ZD, U.K.
| | - Frédéric Blanc
- Department
of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 3ZD, U.K.
| | - Eliana Quartarone
- Department
of Chemistry, University of Pavia, Via Taramelli 16, Pavia 27100, Italy
- National
Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, Firenze 50121, Italy
| |
Collapse
|
13
|
Li J, Fernandez-Alvarez R, Tošner Z, Kozlík P, Štěpánek M, Zhigunov A, Urbanová M, Brus J, Uchman M, Matějíček P. Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis, Characterization, and Lithium-Ion Mobility. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianwei Li
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Zdeněk Tošner
- NMR Laboratory, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Martina Urbanová
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Jiří Brus
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| |
Collapse
|
14
|
Yoshinari N, Konno T. Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. CHEM LETT 2021. [DOI: 10.1246/cl.200857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| |
Collapse
|
15
|
Olszowka JE, Pashkova V, Kornas A, Dedecek J, Brus J, Urbanova M, Tabor E, Klein P, Brabec L, Mlekodaj K. Influence of the ultrasonic-assisted synthesis on Al distribution in a MOR zeolite: from gel to resulting material. NEW J CHEM 2021. [DOI: 10.1039/d1nj00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Al-rich mordenite samples were prepared by the same synthesis procedure except for the activation of the gel for which classical stirring and ultrasonic pretreatment was used.
Collapse
Affiliation(s)
- Joanna E. Olszowka
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Veronika Pashkova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Agnieszka Kornas
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Dedecek
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Martina Urbanova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Edyta Tabor
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Petr Klein
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Libor Brabec
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Kinga Mlekodaj
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|