1
|
Zhu Y, Liang Y, You J, Wang D, Li J, Yang Y, Yang Y. Enhanced Gas Adsorption and Robust Multi-Interface Charge Transfer in Ternary Co 3O 4/ZnIn 2S 4/Pt Heterostructure Arrays for Efficient Triethylamine Detection. ACS Sens 2025. [PMID: 40384426 DOI: 10.1021/acssensors.5c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The resistive gas sensors based on semiconductor materials provide an effective strategy for the detection of harmful gases. However, the limitations of surface gas adsorption activity and interface charge transfer efficiency of semiconductor sensing materials, as well as the complex device fabrication process, pose significant challenges to the development of sensors. Here, a ternary Co3O4/ZnIn2S4/Pt heterostructure arrays gas sensor is designed, which consists of Co3O4 nanowire arrays grown in situ on an alumina flat substrate as backbones, ultrathin ZnIn2S4 nanosheets wrapped around the surface of Co3O4 nanowires, and highly dispersed Pt nanoparticles on the outermost layer. It enables superior sensing performance for the detection of the volatile organic compound triethylamine, which exhibits a significant response of ∼118.97 (Ra/Rg) toward 100 ppm of triethylamine at a relatively low working temperature of 200 °C, along with excellent response/recovery speed, selectivity, and enduring stability (over 3 months). Based on first-principles calculation and a series of spectroscopic characterization (including in situ spectroscopy), it is revealed that the heterostructure arrays exhibited enhanced adsorption activity for both oxygen and triethylamine molecules. Most importantly, the robust p-n heterointerface (Co3O4/ZnIn2S4) and semiconductor-metal heterointerface (Co3O4/Pt, ZnIn2S4/Pt) are formed in the ternary heterostructure, achieving efficient multi-interface charge transfer characteristics. In addition, thanks to the design of in situ 1D/2D/0D porous array structures, the ternary Co3O4/ZnIn2S4/Pt heterostructure arrays not only have large specific surface areas for gas reaction but also simplify device manufacturing. This research offers novel perspectives on boosting the gas sensing performance of semiconductor materials through the comprehensive design of ternary heterostructures with robust multi-interfaces.
Collapse
Affiliation(s)
- Yulin Zhu
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Yan Liang
- Department of Intelligent Engineering, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, P.R. China
| | - Jianxian You
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Dehua Wang
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Jiahao Li
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Yanxing Yang
- Department of Natural Science, Caldwell University, Caldwell, New Jersey 07006, United States
| | - Yong Yang
- Jiangxi Laboratory of Micro/nanomaterials and Sensing Engineering, Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| |
Collapse
|
2
|
Wang Y, Li X, Ge C, Liu G, Qiao G, Wang M. Amorphous Carbon-Loaded WO 3 Nanosheet Arrays for ppb-Level NO 2 Sensing with Improved Anti-Humidity Property. ACS Sens 2025; 10:2309-2318. [PMID: 40098439 DOI: 10.1021/acssensors.4c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metal-oxide-based gas sensors have attracted considerable interest due to their low cost, high sensitivity, quick response, and ease of miniaturization and integration. Unfortunately, metal oxides are susceptible to the interference of moisture, which brings about hydroxyl poisoning of the sensing layer and decrement in baseline resistance and sensor performance. In this study, WO3 films were modified with a porous amorphous carbon layer. The as-loaded amorphous carbon layer improves simultaneously the adsorption capacity of WO3 and hydrophobicity of the surface, which endows the composite films with not only surpassing NO2 sensitivity at the parts per billion level but also enhanced immunity to humidity. The incorporation of amorphous carbon with metal oxides is expected to be a general route for the fabrication of high performance, antihumidity gas sensors.
Collapse
Affiliation(s)
- Yichao Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingsong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Qiu C, Zhang H, Li Q, Song Y, An F, Wang H, Wang S, Zhu L, Zhang D, Yang Z. High Performance H 2S Sensor Based on Ordered Fe 2O 3/Ti 3C 2 Nanostructure at Room Temperature. ACS Sens 2024; 9:5926-5935. [PMID: 39441975 DOI: 10.1021/acssensors.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The utilization of a heterogeneous nanojunction design has shown significant enhancements in the gas sensing capabilities of traditional metal oxide gas sensors. In this study, a novel room temperature H2S gas sensor employing Fe2O3 functionalized Ti3C2 MXene as the sensing material has been developed. This sensor exhibits a broad detection range (0.01-500 ppm), low detection limit (10 ppb), and rapid response/recovery times (10 s/15 s), making it ideal for ppb-level H2S detection. The exceptional gas sensitivity of Fe2O3/Ti3C2 composite to H2S can be attributed to several key factors. First, the unique layered frame structure of Fe2O3/Ti3C2 significantly amplifies the surface area of the hybrid material, enhancing the absorption and diffusion capabilities of H2S molecules. Second, the abundance of functional groups (-O, -OH, and -F) on the surface of Ti3C2 MXene nanosheets provides additional active sites for H2S adsorption, The density functional theory calculation confirms that the adsorption energy of the Fe2O3/Ti3C2 composite for H2S (-2.93 eV) is significantly lower than that of pure Fe2O3 (-2.37 eV) and Ti3C2 (-0.2 eV). Lastly, the remarkable metal conductivity of Ti3C2 MXene ensures efficient electron transfer, thereby enhancing overall sensing performance.
Collapse
Affiliation(s)
- Changkun Qiu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingrun Li
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Yifan Song
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Fei An
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Haozhi Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Shiqiang Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Liang Zhu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhe Yang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| |
Collapse
|
4
|
Chen H, Li J, Tao S, Tian X, Sun X, Gao R, Bai N, Li GD. Mesoporous CdO/CdGa 2O 4 microsphere for rapidly detecting triethylamine at ppb level. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134943. [PMID: 38936186 DOI: 10.1016/j.jhazmat.2024.134943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Developing fast, accurate and sensitive triethylamine gas sensors with low detection limits is paramount to ensure the safety of workers and the public. However, sensors based on single metal oxide materials still suffer from drawbacks such as low response sensitivity and long response and recovery times. To address these challenges, in this work, a series of mesoporous CdO/CdGa2O4 microspheres were synthesized. We optimized the sensor's sensing performance to triethylamine by fine-tuning the ratio of CdO to CdGa2O4. Among them, CdO:3CdGa2O4-based sensor demonstrates a rapid response time of 2 s to detect 100 ppm of triethylamine, with a high response value of 211 and exceptional selectivity. Furthermore, it exhibits a low detection limit of 20 ppb for triethylamine, making it suitable for practically testing fish freshness. Crucially, electron transfer between the heterojunctions increases the chemically adsorbed oxygen on the materials' surface, thereby enhancing the sensor's response sensitivity to triethylamine. This discovery provides new insights and methodologies for the design of highly efficient triethylamine gas sensors.
Collapse
Affiliation(s)
- Huixuan Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiayu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Siwen Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xinhua Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xikun Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo 315100, PR China.
| | - Ni Bai
- School of Mechanical and Metallurgical Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, PR China
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Liu J, Feng S, Sun L, Wei X, Chen L, Liao D, Sun J. Enhanced Interface Charge Carrier Transport of SnO 2/CeO 2 via Oxygen Vacancy Synergized Heterojunction for Triethylamine Sensing Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13446-13457. [PMID: 38877986 DOI: 10.1021/acs.langmuir.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Efficient charge carrier transport characteristics are critical to achieving the excellent performance of metal-oxide semiconductor gas sensors. Herein, SnO2/CeO2 heterojunction layered nanosheets with abundant oxygen vacancies were successfully synthesized through a simple solvothermal assisted high-temperature calcination method. The synergistic effect of oxygen vacancies and heterojunctions promoting the charge carrier transport properties at the SnO2/CeO2 interface for the enhanced sensing properties of triethylamine (TEA) was highlighted. As a result, the optimized SnO2/CeO2 exhibits improved gas sensing performance at 173 °C to 50 ppm of TEA. These include high response (205), excellent selectivity, low detection limit, and good long-term stability. This enhanced gas sensing property of SnO2/CeO2 is mainly attributed to the fact that the heterojunction and oxygen vacancies act as dual active sites synergistically inducing electron transfer, thereby effectively modulating the transport properties of the interfacial charge carriers, and thus facilitate the surface reactions efficiently. In this work, the dual-engineering strategy of synergistic interaction of heterojunction and oxygen vacancies can provide new perspectives for the design of advanced gas sensing materials.
Collapse
Affiliation(s)
- Jinmei Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shaohan Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xu Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lingling Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Zhao J, Li X, Yin Y, Xiong R, Ling G, Zhang P. Applications of cerium-based materials in food monitoring. Food Chem 2024; 444:138639. [PMID: 38330609 DOI: 10.1016/j.foodchem.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of society, food safety to public health has been a topic that cannot be ignored. In recent years, lanthanide-based materials are studied to be potential candidates in the detection of food samples. Cerium (Ce)-based materials (such as Ce ions, CeO2, Ce-metal organic framework (Ce-MOF), etc.) have also attracted more attention in food detection by virtue of colorimetric, fluorescence, sensing, and other methods. This is because the mixed valence of Ce (Ce3+ and Ce4+), the formation of oxygen vacancies, and their optical and electrochemical properties. In this review, Ce-based materials will be introduced and discussed in the field of food detection, including biogenesis, construction, catalytic mechanisms, combination, and applications. In addition, the current challenges and future development trend of these Ce-based materials in food safety detection are also proposed and discussed. Therefore, it is meaningful to explore the Ce-based materials for detection of biomarkers in food samples.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
8
|
Qin F, Fan X, Ma W. Selective Oxidation of Triethylamine Catalyzed by Mn-Ce/ZSM-5. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37220175 DOI: 10.1021/acs.langmuir.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The selective catalytic oxidation (SCO) of triethylamine (TEA) to harmless nitrogen (N2), carbon dioxide (CO2), and water (H2O) is of green elimination technology. In this paper, Mn-Ce/ZSM-5 with different proportions of MnOx/CeOx were studied for the selective catalytic combustion of TEA. The catalysts were characterized by XRD, BET, H2-TPR, XPS, and NH3-TPD and their catalytic activities were analyzed. The results showed that MnOx was the main active component. The addition of a small amount of CeOx promotes the generation of high-valence Mn ions, which reduces the reduction temperature of the catalyst and increases the redox capacity of the catalyst. In addition, the synergistic effect between CeOx and MnOx significantly improves the mobility of reactive oxygen species on the catalyst, thus improving the catalytic performance of the catalyst. The catalytic oxidation performance of TEA over 15Mn5Ce/ZSM-5 is the highest. TEA can be completely converted at 220 °C, and the selectivity for N2 is up to 80%. The reaction mechanism was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS).
Collapse
Affiliation(s)
- Fan Qin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China
| | - Xiaojuan Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China
| | - Weihua Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Liu L, Mao C, Fu H, Qu X, Zheng S. ZnO Nanorod-Immobilized Pt Single-Atoms as an Ultrasensitive Sensor for Triethylamine Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16654-16663. [PMID: 36825856 DOI: 10.1021/acsami.2c21410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Triethylamine (TEA) is a flammable and highly toxic gas, and the fast, accurate, and sensitive detection of gas TEA remains greatly challenging. Herein, we report a ZnO nanorod anchored with a single-atom Pt catalyst (Pt1/ZnO) as a gas sensor for TEA detection. The sensor shows high selectivity and high response to gas TEA with a response value of 4170 at 200 °C, which is 92 times higher than that of pure ZnO. Moreover, the Pt1/ZnO sensor has very short response and recovery times of only 34 and 76 s, respectively, and also has a high response to ppb-level TEA gas (100 ppb-21.6). The gas-sensing enhancement mechanism of the Pt1/ZnO sensor to gas TEA was systematically investigated using band structure analysis, in situ diffuse reflectance infrared Fourier transformation spectroscopy, and density functional theory calculations. The results show that the oxygen vacancies on Pt1/ZnO can effectively activate the adsorbed oxygen. Moreover, chemical bonds can be formed between Pt single atoms and N atoms in TEA to achieve effective adsorption and activation of TEA molecules, facilitating the reaction between TEA and the adsorbed oxygen on Pt1/ZnO, and thereby obtaining high gas-sensing performance. This work highlights the crucial role of Pt single-atom in improving the sensing performance for gas TEA detection, paving the way for developing more advanced gas sensors.
Collapse
Affiliation(s)
- Lingyue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Chengliang Mao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S3H6, Ontario, Canada
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
10
|
Zhang Z, Ma J, Deng Y, Ren Y, Xie W, Deng Y, Zou Y, Luo W. Polymerization-Induced Aggregation Approach toward Uniform Pd Nanoparticle-Decorated Mesoporous SiO 2/WO 3 Microspheres for Hydrogen Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15721-15731. [PMID: 36917766 DOI: 10.1021/acsami.2c23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogen as an important clean energy source with a high energy density has attracted extensive attention in fuel cell vehicles and industrial production. However, considering its flammable and explosive property, gas sensors are desperately desired to efficiently monitor H2 concentration in practical applications. Herein, a facile polymerization-induced aggregation strategy was proposed to synthesize uniform Si-doped mesoporous WO3 (Si-mWO3) microspheres with tunable sizes. The polymerization of the melamine-formaldehyde resin prepolymer (MF prepolymer) in the presence of silicotungstic acid hydrate (abbreviated as H4SiW) leads to uniform MF/H4SiW hybrid microspheres, which can be converted into Si-mWO3 microspheres through a simple thermal decomposition treatment process. In addition, benefiting from the pore confinement effect, monodispersed Pd-decorated Si-mWO3 microspheres (Pd/Si-mWO3) were subsequently synthesized and applied as sensitive materials for the sensing and detection of hydrogen. Owing to the oxygen spillover effect of Pd nanoparticles, Pd/Si-mWO3 enables adsorption of more oxygen anions than pure mWO3. These Pd nanoparticles dispersed on the surface of Si-mWO3 accelerated the dissociation of hydrogen and promoted charge transfer between Pd nanoparticles and WO3 crystal particles, which enhanced the sensing sensitivity toward H2. As a result, the gas sensor based on Pd/Si-mWO3 microspheres exhibited excellent selectivity and sensitivity (Rair/Rgas = 33.5) to 50 ppm H2 at a relatively low operating temperature (210 °C), which was 30 times higher than that of the pure Si-mWO3 sensor. To develop intelligent sensors, a portable sensor module based on Pd/Si-mWO3 in combination with wireless Bluetooth connection was designed, which achieved real-time monitoring of H2 concentration, opening up the possibility for use as intelligent H2 sensors.
Collapse
Affiliation(s)
- Ziling Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Junhao Ma
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Yu Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Wenhe Xie
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yidong Zou
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Wang Y, Zhou Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248728. [PMID: 36556531 PMCID: PMC9784667 DOI: 10.3390/ma15248728] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
In recent decades, chemiresistive gas sensors (CGS) have been widely studied due to their unique advantages of expedient miniaturization, simple fabrication, easy operation, and low cost. As one ubiquitous interference factor, humidity dramatically affects the performance of CGS, which has been neglected for a long time. With the rapid development of technologies based on gas sensors, including the internet of things (IoT), healthcare, environment monitoring, and food quality assessing, the humidity interference on gas sensors has been attracting increasing attention. Inspiringly, various anti-humidity strategies have been proposed to alleviate the humidity interference in this field; however, comprehensive summaries of these strategies are rarely reported. Therefore, this review aims to summarize the latest research advances on humidity-independent CGS. First, we discussed the humidity interference mechanism on gas sensors. Then, the anti-humidity strategies mainly including surface engineering, physical isolation, working parameters modulation, humidity compensation, and developing novel gas-sensing materials were successively introduced in detail. Finally, challenges and perspectives of improving the humidity tolerance of gas sensors were proposed for future research.
Collapse
|
12
|
Jin Z, Wang C, Wu L, Liu H, Shi F, Zhao J, Liu F, Fu K, Wang F, Wang Z, Liu J. Construction of Pt/Ce-In2O3 hierarchical microspheres for superior triethylamine detection at low temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Deng Z, Zhang Y, Song Z, Xu D, Zi B, Zhu P, Lu Q, Zhang J, Zhao J, Liu Q. Pd-SnO 2/In 2O 3 with a Unique Structure for the Ultrasensitive Detection of Triethylamine near Room Temperature. ACS Sens 2022; 7:3501-3512. [PMID: 36368004 DOI: 10.1021/acssensors.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triethylamine (TEA) is a serious threat to people's health, and it is still a challenge to detect TEA at ppb level near room temperature (RT). Herein, we developed a simple, low-cost, low-temperature, and ultra-sensitive TEA sensor based on Pd-SnO2/In2O3 composites. First, SnO2 nanoparticles were obtained by the pyrolysis of Sn-MOF@SnO2 precursor (MOF: metal organic framework), and Pd-SnO2/In2O3 composites were prepared by further compounding and doping. The results show that the Pd-SnO2/In2O3 sensor is highly sensitive to TEA gas at near RT (at 60 °C, the sensor response to 10 ppm TEA is 12,000, the response/recovery (res/rec) time is 51 s/493 s, and at 30 °C, the response value also reaches 1380, the res/rec time is 66 s/610 s), along with good selectivity, stability, and moisture resistance. Even at 10 °C operating temperature and 75% relative humidity (RH) in a low-temperature and high-humidity environment, it still maintains a high sensitivity of over 1000 to 10 ppm TEA, which shows great application potential in TEA detection. The reason for the enhanced performance of the 0.5%Pd-SnO2/In2O3 sensor can be attributed to a large number of adsorbed oxygens on the unique structure of the material, the good charge transfer ability of the n-n-type heterojunction between SnO2 and In2O3, the chemical sensitization and electronic sensitization of Pd nanoparticles, and the catalytic spillover effect. This work will provide a new approach for preparing sensors with good comprehensive properties, making full use of the advantages of the material structure-activity relationship.
Collapse
Affiliation(s)
- Zongming Deng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Zhenlin Song
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Dong Xu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Pengsheng Zhu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Qiang Lu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming650091, P. R. China
| |
Collapse
|
14
|
Song Z, Zeng J, Zi B, Chen F, Zhang Y, Zhang G, Zhu Z, Zhang J, Liu Q. Highly sensitive triethylamine gas sensor by Pt-loaded p-n heterojunction Co 3O 4/WO 3. NANOTECHNOLOGY 2022; 34:045501. [PMID: 36265415 DOI: 10.1088/1361-6528/ac9c08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Triethylamine (TEA) exists widely in production and life and is extremely volatile, which seriously endangers human health. It is required to develop high-performance TEA sensors to protect human health. We fabricated Pt-Co3O4/WO3based on our previous work, and the performance was tested against volatile organic compounds. Compared with the previous work, its operating temperature was greatly reduced from 240 °C to 180 °C. The response value of Pt-Co3O4/WO3was increased from 1101 to 1532 for 10 ppm TEA with good selectivity. These results show a significant step toward practical use of the Pt-Co3O4/WO3sensor.
Collapse
Affiliation(s)
- Zhenlin Song
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jiyang Zeng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Fengying Chen
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Genlin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqi Zhu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
15
|
Jiang L, Liu Y, Sun W, Tang M, Zhang Y, Lv S, Wang J, Liu Y, Wang C, Sun P, Zheng J, Liu F, Lu G. Mixed potential type sensor based on Gd 2Zr 2O 7 solid electrolyte and BiVO 4 sensing electrode for effective detection of triethylamine. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129695. [PMID: 35963092 DOI: 10.1016/j.jhazmat.2022.129695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Triethylamine (TEA), as a common and widely used industrial raw material, is extremely hazardous to the environment and human health. Therefore, the development of a portable gas-sensing technology for high-efficiency detection of TEA is of great worth for human health and environmental monitoring. In this work, a mixed potential type TEA sensor was initially developed based on pyrochlore Gd2Zr2O7 solid state electrolyte and BiVO4 sensing electrode. The sensor generates high response values of - 62.2 mV and - 134.4 mV to 5 ppm and 100 ppm TEA at 500 °C, respectively. The response value of the sensor displays a logarithmic linear relationship with the concentration of TEA in the range of 1-100 ppm with the sensitivity of - 50.8 mV/decade. Besides, the sensor shows good response and recovery characteristics, and the response and recovery time to 10 ppm TEA is 10 s and 89 s, respectively. Moreover, the sensor possesses good humidity resistance, reproducibility and stability. The sensing behavior of the sensor is explained by the mixed potential sensing mechanism, which is confirmed by the measurement of the polarization curves. This work provides a good supplement for TEA gas sensor, which holds important application value for the sensitive detection of TEA in the environment.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Minghao Tang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yueying Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Siyuan Lv
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jing Wang
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China; International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China; International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jie Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China; International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China; International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
16
|
Yan Z, Zhang Y, Kang W, Deng N, Pan Y, Sun W, Ni J, Kang X. TiO 2 Gas Sensors Combining Experimental and DFT Calculations: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3611. [PMID: 36296801 PMCID: PMC9607066 DOI: 10.3390/nano12203611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Gas sensors play an irreplaceable role in industry and life. Different types of gas sensors, including metal-oxide sensors, are developed for different scenarios. Titanium dioxide is widely used in dyes, photocatalysis, and other fields by virtue of its nontoxic and nonhazardous properties, and excellent performance. Additionally, researchers are continuously exploring applications in other fields, such as gas sensors and batteries. The preparation methods include deposition, magnetron sputtering, and electrostatic spinning. As researchers continue to study sensors with the help of modern computers, microcosm simulations have been implemented, opening up new possibilities for research. The combination of simulation and calculation will help us to better grasp the reaction mechanisms, improve the design of gas sensor materials, and better respond to different gas environments. In this paper, the experimental and computational aspects of TiO2 are reviewed, and the future research directions are described.
Collapse
Affiliation(s)
- Zirui Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Yaofang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yingwen Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Wei Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Jian Ni
- Department of Electronic Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoying Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
17
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Li D, Li Y, Wang X, Sun G, Cao J, Wang Y. Improved TEA Sensitivity and Selectivity of In2O3 Porous Nanospheres by Modification with Ag Nanoparticles. NANOMATERIALS 2022; 12:nano12091532. [PMID: 35564240 PMCID: PMC9105240 DOI: 10.3390/nano12091532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
A highly sensitive and selective detection of volatile organic compounds (VOCs) by using gas sensors based on metal oxide semiconductor (MOS) has attracted increasing interest, but still remains a challenge in gas sensitivity and selectivity. In order to improve the sensitivity and selectivity of In2O3 to triethylamine (TEA), herein, a silver (Ag)-modification strategy is proposed. Ag nanoparticles with a size around 25–30 nm were modified on pre-synthesized In2O3 PNSs via a simple room-temperature chemical reduction method by using NaBH4 as a reductant. The results of gas sensing tests indicate that after functionalization with Ag, the gas sensing performance of In2O3 PNSs for VOCs, especially for TEA, was remarkably improved. At a lower optimal working temperature (OWT) of 300 °C (bare In2O3 sensor: 320 °C), the best Ag/In2O3-2 sensor (Ag/In2O3 PNSs with an optimized Ag content of 2.90 wt%) shows a sensitivity of 116.86/ppm to 1–50 ppm TEA, about 170 times higher than that of bare In2O3 sensor (0.69/ppm). Significantly, the Ag/In2O3-2 sensor can provide a response (Ra/Rg) as high as 5697 to 50 ppm TEA, which is superior to most previous TEA sensors. Besides lower OWT and higher sensitivity, the Ag/In2O3-2 sensor also shows a remarkably improved selectivity to TEA, whose selectivity coefficient (STEA/Sethanol) is as high as 5.30, about 3.3 times higher than that of bare In2O3 (1.59). The sensitization mechanism of Ag on In2O3 is discussed in detail.
Collapse
Affiliation(s)
- Dengke Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China; (J.C.); (Y.W.)
| | - Yanwei Li
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China; (J.C.); (Y.W.)
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
- Correspondence: (Y.L.); (G.S.); Tel.: +86-03913986952 (G.S.)
| | - Xiaohua Wang
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Guang Sun
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China; (J.C.); (Y.W.)
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
- Correspondence: (Y.L.); (G.S.); Tel.: +86-03913986952 (G.S.)
| | - Jianliang Cao
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China; (J.C.); (Y.W.)
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Yan Wang
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China; (J.C.); (Y.W.)
| |
Collapse
|
19
|
Zeb S, Cui Y, Zhao H, Sui Y, Yang Z, Khan ZU, Ahmad SM, Ikram M, Gao Y, Jiang X. Synergistic Effect of Au-PdO Modified Cu-Doped K 2W 4O 13 Nanowires for Dual Selectivity High Performance Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13836-13847. [PMID: 35286068 DOI: 10.1021/acsami.1c23051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Both 3-hydroxy-2-butanone and triethylamine are highly toxic and harmful to human health, and their chronic inhalation can cause respiratory diseases, eye lesions, dermatitis, headache, dizziness, drowsiness, and even fatality. Developing sensors for detecting such toxic gases with low power consumption, high response with superselectivity, and stability is crucial for healthcare and environmental monitoring. This study presents a typical gas sensor fabricated based on AuPdO modified Cu-doped K2W4O13 nanowires, which can selectively detect 3-hydroxy-2-butanone and triethylamine at 120 and 200 °C, respectively. The sensor displays excellent sensing performance at reduced operating temperature, high selectivity, fast response/recovery, and stability, which can be attributed to a synergistic effect of Cu dopants and AuPdO nanoparticles on the K2W4O13 host. The enhanced sensing response and selectivity could be attributed to the oxygen vacancies/defects, bandgap excitation, the electronic sensitization, the reversible redox reaction of PdO and Cu, the cocatalytic activity of AuPdO, and Schottky barrier contacts at the interface of tungsten oxide and Au. The significant variations in the activation capacities of Cu-doped K2W4O13, Pd/PdO, and Au nanoparticles toward 3H-2B and TEA, and the diffusion depth of the two gases in the coated sensing layer may cause dual selectivity. The designed gas sensor materials can serve as a sensitive target for detecting toxic biomarkers and hold broad application prospects in food and environmental safety inspection.
Collapse
Affiliation(s)
- Shah Zeb
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| | - Heng Zhao
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| | - Ying Sui
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| | - Zhen Yang
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| | - Zia Ullah Khan
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Shah Masood Ahmad
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Ikram
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, P. R. China
| | - Xuchuan Jiang
- School of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, P. R. China
| |
Collapse
|
20
|
Liu J, Zhang L, Fan J, Yu J. Semiconductor Gas Sensor for Triethylamine Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104984. [PMID: 34894075 DOI: 10.1002/smll.202104984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Indexed: 05/25/2023]
Abstract
With the demanding detection of unique toxic gas, semiconductor gas sensors have attracted tremendous attention due to their intriguing features, such as, high sensitivity, online detection, portability, ease of use, and low cost. Triethylamine, a typical gas of volatile organic compounds, is an important raw material for industrial development, but it is also a hazard to human health. This review presents a concise compilation of the advances in triethylamine detection based on chemiresistive sensors. Specifically, the testing system and sensing parameters are described in detail. Besides, the sensing mechanism with characterizing tactics is analyzed. The research status based on various chemiresistive sensors is also surveyed. Finally, the conclusion and challenges, as well as some perspectives toward this area, are presented.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
21
|
Chang J, Zhang H, Cao J, Wang Y. Ultrahigh sensitive and selective triethylamine sensor based on h-BN modified MoO3 nanowires. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zeng J, Rong Q, Xiao B, Zi B, Kuang X, Deng X, Ma Y, Song Z, Zhang G, Zhang J, Liu Q. Ultrasensitive ppb-level trimethylamine gas sensor based on p-n heterojunction of Co 3O 4/WO 3. NANOTECHNOLOGY 2021; 32:505511. [PMID: 34587592 DOI: 10.1088/1361-6528/ac2b6d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Trace poisonous and harmful gases in the air have been harming and affecting people's health for a long time. At present, effective and accurate detection of ppb-level harmful gas is still a bottleneck to be overcome. Herein, we report a ppb-level triethylamine (TEA) gas sensor based on p-n heterojunction of Co3O4/WO3, which is prepared with ZIF-67 as the precursor and provides Co3O4deposited tungsten oxide flower-like structure. Due to the introduction of Co3O4and the 3D flower-like structure of WO3, the Co3O4/WO3-2 gas sensor shows excellent gas sensing performance (1101 for 10 ppm at 240 °C), superb selectivity, good long-term stability and linear response for TEA concentration. Moreover, the experimental results indicate that the Co3O4/WO3-2 gas sensor also possesses a good response to 50 ppb TEA, in fact, the theoretical limit of detection is 0.6 ppb. Co3O4not only improves the efficiency of electron separation/transport, but also accelerates the oxidation rate of TEA. This method of synthesizing p-n heterojunction with ZIF as the precursor provides a new idea and method for the preparation of low detection limit gas sensors.
Collapse
Affiliation(s)
- Jiyang Zeng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Qian Rong
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Bin Xiao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Xinya Kuang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiyu Deng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yiwen Ma
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhenlin Song
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Genlin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
24
|
Yu Q, Jin R, Zhao L, Wang T, Liu F, Yan X, Wang C, Sun P, Lu G. MOF-Derived Mesoporous and Hierarchical Hollow-Structured In 2O 3-NiO Composites for Enhanced Triethylamine Sensing. ACS Sens 2021; 6:3451-3461. [PMID: 34473472 DOI: 10.1021/acssensors.1c01374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It remains a challenge to design and fabricate high-performance gas sensors using metal-organic framework (MOF)-derived metal oxide semiconductors (MOS) as sensing materials due to the structural damage during the annealing process. In this study, the mesoporous In2O3-NiO hollow spheres consisting of nanosheets were prepared via a solvothermal reaction and subsequent cation exchange. More importantly, the transformation of Ni-MOF into In/Ni-MOF through exchanging the Ni2+ ion with In3+ ion can prevent the destruction of the porous reticular skeleton and hierarchical structure of Ni-MOF during calcination. Thus, the mesoporous In2O3-NiO hollow composites possess high porosity and large specific surface area (55.5 m2 g-1), which can produce sufficient permeability pathways for volatile organic compound (VOCs) molecules, maximize the active sites, and enhance the capacity of VOC capture. The mesoporous In2O3-NiO-based sensors exhibit enhanced triethylamine (TEA) sensing performance (S = 33.9-100 ppm) with distinct selectivity, good long-term stability, and lower detection limit (500 ppb) at 200 °C. These results can be attributed to the mesoporous hollow hierarchical structure and p-n junction of In2O3-NiO. The preparation concept mentioned in this work may provide a versatile platform applicable to various mesoporous composite sensing material-based hollow structures.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Rongrong Jin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liupeng Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tianshuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
25
|
|
26
|
Liu J, Zhu B, Zhang L, Fan J, Yu J. 0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. J Colloid Interface Sci 2021; 600:898-909. [PMID: 34058608 DOI: 10.1016/j.jcis.2021.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/04/2023]
Abstract
It is imperative to seek for novel materials with pronounced gas sensing performance towards triethylamine for the sake of human health. Herein, we successfully fabricate an outstanding triethylamine sensor based on CdS/ZnO composite with 0D/2D structure, which are prepared by in-situ growth of CdS quantum dots on ultra-thin ZnO nanosheets. The ratios between the two ingredients are adjusted and their effect is evaluated. The optimal sample exhibits the lowest operating temperature of 200 °C, the highest response value of ~20 and the fastest response time of 2 s. Besides, it also has the virtues of durable stability, excellent selectivity and superior anti-interference ability. The mechanism behind the aforementioned intriguing performance is investigated by X-ray photoelectron spectroscopy, Kelvin probe and density function theory (DFT) simulation. All the results verify that the enhanced gas sensing properties are derived from splendid 0D/2D structure, n-n heterojunction and large specific surface area. Additionally, this study opens an avenue for designing sensors with 0D/2D structure.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|