1
|
Liu Y, Luo K, Xing W, Yin W, Feng J, Pi S, Kang Z, Liang J, Tang L, Tang W. Synergy from the Stepped Hollow FeHCFe Nanocubes and the Dimorphic Polypyrrole for High-Performance Electrochemical Water Desalination. Angew Chem Int Ed Engl 2025; 64:e202501797. [PMID: 39927834 DOI: 10.1002/anie.202501797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Saline water desalination serves as an important route to increase freshwater supply, while capacitive deionization (CDI) has emerged as a promising technique to tackle this issue. To boost the successful application of CDI, development of advanced electrode materials is vital. Herein, we innovatively designed and synthesized a sophisticated Prussian blue/dimorphic polypyrrole composite for the hybrid CDI (HCDI). Specifically, the nanoparticle-like polypyrrole (PPy) in situ distributed on the surface of stepped hollow FeHCFe nanocubes, while the coexisting nanotube-like PPy interconnected the discrete stepped hollow FeHCFe nanocubes. The introduction of PPy nanoparticles/nanotubes promoted both electron and ion dynamics, and improved the electrochemical activity of FeHCFe. Meanwhile, the FeHCFe nanocubes with concave stepwise architecture on each side offered large accessible contact area for electrolyte, reduced Na+ migration path, improved tolerance for lattice expansion, and optimized redox sites for Na+ storage. Through such unique structural design and synergistic combination, the FeHCFe/PPy with appropriate component ratio achieved a remarkable desalination capacity and a fast desalination rate along with excellent cycling performance, outperforming other related materials. Moreover, the treated solution can meet the drinking water standard within 6 min via the use of six tandem HCDI cells. Density functional theory (DFT) revealed the mechanism of Na+ capture process and provided a fundamental understanding of the rapid Na+ migration and large Na+ storage capability. This study provides insights into ration design of superior electrode materials for high-performance electrochemical water desalination.
Collapse
Affiliation(s)
- Yu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Kunyue Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Wenjun Yin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Shuaishuai Pi
- CCCC Third Harbor Consultants Co., Ltd., Shanghai, 200032, China
| | - Zixiao Kang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Wang S, Lei Y, Wang G, Zhao L, Shen X, Li S, Du S, Yang C, Qiu J. High Performance Capacitive Deionization Cathode of Nickel Hexacyanoferrate Doped with Trace Molybdenum: Breaking the Capacity-Stability Trade-Off. Angew Chem Int Ed Engl 2025:e202504775. [PMID: 40237612 DOI: 10.1002/anie.202504775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Nickel hexacyanoferrate (NiHCF) is considered one of the most promising electrode materials for capacitive deionization (CDI) because of its excellent cycling stability and other advantages. However, the poor desalination ability and low adsorption capacity caused by a single reaction site seriously restrict its practical application. Here, a high-valence transition metal element Mo-doped strategy is proposed to utilize traces of Mo6+ to activate the inert-sites within NiHCF. The Mo-doped NiHCF electrodes (NiMox-HCF) with multiple pairs of redox active sites and long cycling capability were designed, breaking the trade-off between high adsorption capacity and cycling stability. The results show that the preferred NiMo0.3-HCF not only retains the excellent cycling stability (91% after 200 cycles), but also possesses a high adsorption capacity of 90.92 mg g-1 at 1.2 V, which is much better than those of NiHCF under the same conditions. In addition, it has good practical application in simulated brackish water and circulating cooling water. Structural characterization and theoretical calculations indicate that the Mo doping strategy enhanced electronic conductivity while maintaining structural stability. This research proposes a new method to activate inert sites using high-valence elements, thus effectively balancing the adsorption capacity and cycling stability of the electrode.
Collapse
Affiliation(s)
- Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Yuhao Lei
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Lin Zhao
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xiaoyan Shen
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Sheng Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Shuwen Du
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Chen Yang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523106, P.R. China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
3
|
Guo K, Zhang L, Huang S, Fang R, Jin Y, Li B, Wang Y, Xu S. Three-dimensional coated CuNiFe-Prussian blue analogue@MXene heterostructure for capacitive deionization to slow down the damage of MXene by dissolved oxygen. J Colloid Interface Sci 2025; 682:135-147. [PMID: 39615133 DOI: 10.1016/j.jcis.2024.11.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Within the capacitive deionization (CDI) realm, the two-dimensional (2D) layered material T3C2Tx MXene has drawn lots of attention because of its excellent electrical conductivity, reversible ionic intercalation/deintercalation capacity, and extensive active sites. However, the performance of MXene is compromised by the fact that its surface is susceptible to oxidation by dissolved oxygen and has inherent defects of self-stacking. In this paper, CuNiFe-Prussian blue analogue@MXene (CuNiFe-PBA@MXene) with three-dimensional (3D) coated heterostructure is successfully prepared by the in-situ coprecipitation. CuNiFe-PBA is uniformly coated on the MXene surface as a functional layer to avoid the re-stacking of MXene, to enlarge their layer spacing, and to slow down the damage of MXene by dissolved oxygen. Based on a coated structure constructed by a good combination of dual pseudocapacitive materials, the CuNiFe-PBA@MXene electrode has excellent electrochemical performance (250F g-1). The composed MXene//CuNiFe-PBA@MXene hybrid cell in 500 mg/L NaCl has higher desalination capacity (44.94 mg/g), lower energy consumption (0.66 kWh kg-1), and excellent desalination capacity retention (93.46 % after 40 adsorption/desorption cycles). Furthermore, the lower oxidation degree of CuNiFe-PBA@MXene after 40 desalination cycles compared to MXene indicates that the constructed 3D heterogeneous structure can protect MXene and slow down the oxidation of MXene by dissolved oxygen.
Collapse
Affiliation(s)
- Kaiwen Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Le Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Shunjiang Huang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Rongli Fang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Ying Jin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Bingying Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Yue Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China.
| | - Shichang Xu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| |
Collapse
|
4
|
Fan Z, Wang W, Ren J, Zhang S, Ren R, Lv YK. Additive-Free, In Situ Rapid Repair of Vacancies in Fe[Fe(CN) 6] Electrodes for Efficient Capacitive Deionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20725-20735. [PMID: 39304525 DOI: 10.1021/acs.langmuir.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fe[Fe(CN)6] (FeHCF) is considered a promising material for capacitive deionization-desalination of saline wastewater due to its excellent structure. However, additives are usually introduced during the synthesis of FeHCF in order to avoid [Fe(CN)6]3- vacancy defects filled by ligand water, which can result in the appearance of harmful byproducts and additional water treatment costs. In this study, an additive-free in situ vacancy repair strategy is proposed for the rapid synthesis of high-quality FeHCF in a saturated K3Fe(CN)6 solution. During the process of synthesizing FeHCF in solution, a high concentration of [Fe(CN)6]3- is found to facilitate the binding of Fe3+ to [Fe(CN)6]3- and hinder the hydrolysis and coordination reaction of Fe3+. After undergoing repair, FeHCF4 demonstrates an increased capacity and highly reversible electrochemical performance due to the robust structure. When utilized as Faraday cathodes in hybrid capacitive deionization (HCDI) systems, FeHCF4 exhibits a higher salt removal capacity (65.67 mg g-1) and lower energy consumption (0.68 kWh kg-1-NaCl) compared to unrepaired FeHCF1, while still maintaining excellent cycling performance. This environmentally friendly approach of repairing vacancies serves as a source of inspiration for the advancement of high-performance Prussian Blue analogues as capacitive sodium-removing materials.
Collapse
Affiliation(s)
- Zewen Fan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wannan Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jing Ren
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shaofei Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ruipeng Ren
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030017, Shanxi, China
| | - Yong-Kang Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030017, Shanxi, China
| |
Collapse
|
5
|
Zhou X, Shu S, Ye X, Li Z. Engineering Faradaic Electrode Materials for High-Efficiency Water Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400047. [PMID: 38488708 DOI: 10.1002/smll.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 08/09/2024]
Abstract
Water desalination technologies play a key role in addressing the global water scarcity crisis and ensuring a sustainable supply of freshwater. In contrast to conventional capacitive deionization, which suffers from limitations such as low desalination capacity, carbon anode oxidation, and co-ion expulsion effects of carbon materials, the emerging faradaic electrochemical deionization (FDI) presents a promising avenue for enhancing water desalination performance. These electrode materials employed faradaic charge-transfer processes for ion removal, achieving higher desalination capacity and energy-efficient desalination for high salinity streams. The past decade has witnessed a surge in the advancement of faradaic electrode materials and considerable efforts have been made to explore optimization strategies for improving their desalination performance. This review summarizes the recent progress on the optimization strategies and underlying mechanisms of faradaic electrode materials in pursuit of high-efficiency water desalination, including phase, doping and vacancy engineering, nanocarbon incorporation, heterostructures construction, interlayer spacing engineering, and morphology engineering. The key points of each strategy in design principle, modification method, structural analysis, and optimization mechanism of faradaic materials are discussed in detail. Finally, this work highlights the remaining challenges of faradaic electrode materials and present perspectives for future research.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shirui Shu
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoyu Ye
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zejun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| |
Collapse
|
6
|
Li J, Wang R, Han L, Wang T, El-Bahy ZM, Mai Y, Wang C, Yamauchi Y, Xu X. Enhanced redox kinetics of Prussian blue analogues for superior electrochemical deionization performance. Chem Sci 2024; 15:11814-11824. [PMID: 39092121 PMCID: PMC11290438 DOI: 10.1039/d4sc00686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Prussian blue analogues (PBAs), representing the typical faradaic electrode materials for efficient capacitive deionization (CDI) due to their open architecture and high capacity, have been plagued by kinetics issues, leading to insufficient utilization of active sites and poor structure stability. Herein, to address the conflict issue between desalination capacity and stability due to mismatched ionic and electronic kinetics for the PBA-based electrodes, a rational design, including Mn substitution and polypyrrole (ppy) connection, has been proposed for the nickel hexacyanoferrate (Mn-NiHCF/ppy), serving as a model case. Particularly, the theoretical calculation manifests the reduced bandgap and energy barrier for ionic diffusion after Mn substitution, combined with the increased electronic conductivity and integrity through ppy connecting, resulting in enhanced redox kinetics and boosted desalination performance. Specifically, the optimized Mn-NiHCF/ppy demonstrates a remarkable desalination capacity of 51.8 mg g-1 at 1.2 V, accompanied by a high charge efficiency of 81%, and excellent cycling stability without obvious degradation up to 50 cycles, outperforming other related materials. Overall, our concept shown herein provides insights into the design of advanced faradaic electrode materials for high-performance CDI.
Collapse
Affiliation(s)
- Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Ruoxing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Lanlan Han
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Zeinhom M El-Bahy
- Chemistry Department, Faculty of Science, Al-Azhar University Nasr City Cairo Egypt
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 Zhejiang China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology Huaian 223003 P. R. China
| |
Collapse
|
7
|
Anil Kumar Y, Sana SS, Ramachandran T, Assiri MA, Srinivasa Rao S, Kim SC. From lab to field: Prussian blue frameworks as sustainable cathode materials. Dalton Trans 2024; 53:10770-10804. [PMID: 38859722 DOI: 10.1039/d4dt00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prussian blue and Prussian blue analogues have attracted increasing attention as versatile framework materials with a wide range of applications in catalysis, energy conversion and storage, and biomedical and environmental fields. In terms of energy storage and conversion, Prussian blue-based materials have emerged as suitable candidates of growing interest for the fabrication of batteries and supercapacitors. Their outstanding electrochemical features such as fast charge-discharge rates, high capacity and prolonged cycling life make them favorable for energy storage application. Furthermore, Prussian blue and its analogues as rechargeable battery anodes can advance significantly by the precise control of their structure, morphology, and composition at the nanoscale. Their tunable structural and electronic properties enable the detection of many types of analytes with high sensitivity and specificity, and thus, they are ideal materials for the development of sensors for environmental detection, disease trend monitoring, and industrial safety. Additionally, Prussian blue-based catalysts display excellent photocatalytic performance for the degradation of pollutants and generation of hydrogen. Specifically, their excellent light capturing and charge separation capabilities make them stand out in photocatalytic processes, providing a sustainable option for environmental remediation and renewable energy production. Besides, Prussian blue coatings have been studied particularly for corrosion protection, forming stable and protective layers on metal surfaces, which extend the lifespan of infrastructural materials in harsh environments. Prussian blue and its analogues are highly valuable materials in healthcare fields such as imaging, drug delivery and theranostics because they are biocompatible and their further functionalization is possible. Overall, this review demonstrates that Prussian blue and related framework materials are versatile and capable of addressing many technical challenges in various fields ranging from power generation to healthcare and environmental management.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
8
|
Lei Y, Wang S, Zhao L, Li C, Wang G, Qiu J. Entropy Engineering Constrain Phase Transitions Enable Ultralong-life Prussian Blue Analogs Cathodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402340. [PMID: 38666424 PMCID: PMC11267327 DOI: 10.1002/advs.202402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Indexed: 07/25/2024]
Abstract
Prussian blue analogs (PBAs) are considered as one of the most potential electrode materials in capacitive deionization (CDI) due to their unique 3D framework structure. However, their practical applications suffer from low desalination capacity and poor cyclic stability. Here, an entropy engineering strategy is proposed that incorporates high-entropy (HE) concept into PBAs to address the unfavorable multistage phase transitions during CDI desalination. By introducing five or more metals, which share N coordination site, high-entropy hexacyanoferrate (HE-HCF) is constructed, thereby increasing the configurational entropy of the system to above 1.5R and placing it into the high-entropy category. As a result, the developed HE-HCF demonstrates remarkable cycling performance, with a capacity retention rate of over 97% after undergoing 350 ultralong-life cycles of adsorption/desorption. Additionally, it exhibits a high desalination capacity of 77.24 mg g-1 at 1.2 V. Structural characterization and theoretical calculation reveal that high configurational entropy not only helps to restrain phase transition and strengthen structural stability, but also optimizes Na+ ions diffusion path and energy barrier, accelerates reaction kinetics and thus improves performance. This research introduces a new approach for designing electrodes with high performance, low cost, and long-lasting durability for capacitive deionization applications.
Collapse
Affiliation(s)
- Yuhao Lei
- School of Environment and Civil EngineeringResearch Center for Eco‐environmental EngineeringDongguan University of TechnologyDongguanGuangdong523106P. R. China
| | - Shiyong Wang
- School of Environment and Civil EngineeringResearch Center for Eco‐environmental EngineeringDongguan University of TechnologyDongguanGuangdong523106P. R. China
| | - Lin Zhao
- School of Environment and Civil EngineeringResearch Center for Eco‐environmental EngineeringDongguan University of TechnologyDongguanGuangdong523106P. R. China
- College of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Changping Li
- School of Environment and Civil EngineeringResearch Center for Eco‐environmental EngineeringDongguan University of TechnologyDongguanGuangdong523106P. R. China
| | - Gang Wang
- School of Environment and Civil EngineeringResearch Center for Eco‐environmental EngineeringDongguan University of TechnologyDongguanGuangdong523106P. R. China
| | - Jieshan Qiu
- College of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
9
|
Wu G, Wang H, Huang L, Yan J, Chen X, Zhu H, Wu Y, Liu S, Shen X, Liu W, Liu X, Zhang H. Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance. J Colloid Interface Sci 2024; 659:993-1002. [PMID: 38224631 DOI: 10.1016/j.jcis.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Hongyu Wang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanxuan Chen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Huabing Zhu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Yi Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Shumei Liu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xiaozhen Shen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Weiqi Liu
- International Department, The Affiliated High School of South China Normal University, No.1 Zhongshan Avenue West, Tianhe District, Guangzhou 510630, PR China
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Datar SD, Kumar N, Sawant V, Shaikh N, Jha N. Solar reduced graphene oxide decorated with manganese dioxide nanostructures for brackish water desalination using asymmetric capacitive deionization. Phys Chem Chem Phys 2023; 25:30381-30390. [PMID: 37909374 DOI: 10.1039/d3cp02984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Capacitive deionization (CDI) has emerged as a low-cost, reagent-free technique for the desalination of water. This technique is based on the immobilization of dissolved ions on the electrically charged electrodes, by the electrosorption phenomenon. The electrosorption of dissolved ions by using CDI is limited for feed water having a low concentration of salts. To address this problem, we employ an asymmetric capacitive deionization (Asy-CDI) architecture having solar reduced graphene oxide decorated with manganese dioxide nanostructures (SRGO-MnO2 composite). The Asy-CDI possesses an SRGO-MnO2 composite as the cathode and SRGO as the anode with an anion exchange membrane. The cathode formed from the SRGO-MnO2 composite serves the purpose of immobilization of cations, whereas the anode formed from SRGO is responsible for anion removal. The crystal structure, chemical composition and morphology of the as-synthesized SRGO-MnO2 composite electrode materials are characterized by several techniques, confirming that the surface of SRGO is successfully loaded with α-MnO2 nanostructures. The electrochemical characterization reveals a high specific capacitance of the as-synthesized SRGO-MnO2 composite (419.9 F g-1) at 100 mV s-1. The Asy-CDI provides a higher salt adsorption capacity (40.2 mg g-1) compared to Sy-CDI (28.3 mg g-1) with feed water containing a salt concentration of 2000 mg L-1. These results indicate that the Asy-CDI may be employed as an efficient technique for the desalination of high concentration salt water.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| | - Nitish Kumar
- Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| | - Vrushali Sawant
- Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| | - Noora Shaikh
- Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
11
|
Bao Y, Hao J, Zhang S, Zhu D, Li F. Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300384. [PMID: 37116117 DOI: 10.1002/smll.202300384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Prussian blue analogs (PBAs) represent a crucial class of intercalation electrode materials for electrochemical water desalination. It is shown here that structural/compositional tailoring of PBAs, the nickel hexacyanoferrate (NiHCF) electrodes in particular, can efficiently modulate their capacitive deionization (CDI) performance (e.g., desalination capacity, cyclability, selectivity, etc.). Both the desalination capacity and the cyclability of NiHCF electrodes are highly dependent on their structural/compositional features such as crystallinity, morphology, hierarchy, and coatings. It is demonstrated that the CDI cell with hierarchically structured NiHCF nanoframe (NiHCF-NF) electrode exhibits a superior desalination capacity of 121.38 mg g-1 , a high charge efficiency of up to 82%, and a large capacity retention of 88% after 40 cycles intercalation/deintercalation. In addition, it is discovered that coating of carbon (C) film over NiHCF can lower its desalination capacity owing to the partial blockage of diffusion openings by the coated C film. Moreover, the hierarchical NiHCF-NF electrode also demonstrates a superior selectivity toward monovalent sodium ions (Na+ ) over divalent calcium (Ca2+ ) and magnesim (Mg2+ ) ions, allowing it to be a promising platform for preferential capturing Na+ ions from brines. Overall, the structural/compositional tailoring strategies would offer a viable option for the rational design of other intercalation electrode materials applied in CDI techniques.
Collapse
Affiliation(s)
- Yang Bao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Jinxin Hao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Shu Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Dechun Zhu
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
12
|
Rethinasabapathy M, Bhaskaran G, Hwang SK, Ryu TG, Huh YS. Efficient lithium extraction using redox-active prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization. CHEMOSPHERE 2023:139256. [PMID: 37331664 DOI: 10.1016/j.chemosphere.2023.139256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Global demand for lithium (Li) resources has dramatically increased due to the demand for clean energy, especially the large-scale usage of lithium-ion batteries in electric vehicles. Membrane capacitive deionization (MCDI) is an energy and cost-efficient electrochemical technology at the forefront of Li extraction from natural resources such as brine and seawater. In this study, we designed high-performance MCDI electrodes by compositing Li+ intercalation redox-active Prussian blue (PB) nanoparticles with highly conductive porous activated carbon (AC) matrix for the selective extraction of Li+. Herein, we prepared a series of PB-anchored AC composites (AC/PB) containing different percentages (20%, 40%, 60%, and 80%) of PB by weight (AC/PB-20%, AC/PB-40%, AC/PB-60%, and AC/PB-80%, respectively). The AC/PB-20% electrode with uniformly anchored PB nanoparticles over AC matrix enhanced the number of active sites for electrochemical reaction, promoted electron/ion transport paths, and facilitated abundant channels for the reversible insertion/de-insertion of Li+ by PB, which resulted in stronger current response, higher specific capacitance (159 F g-1), and reduced interfacial resistance for the transport of Li+ and electrons. An asymmetric MCDI cell assembled with AC/PB-20% as cathode and AC as anode (AC//AC-PB20%) displayed outstanding Li+ electrosorption capacity of 24.42 mg g-1 and a mean salt removal rate of 2.71 mg g min-1 in 5 mM LiCl aqueous solution at 1.4 V with high cyclic stability. After 50 electrosorption-desorption cycles, 95.11% of the initial electrosorption capacity was retained, reflecting its good electrochemical stability. The described strategy demonstrates the potential benefits of compositing intercalation pseudo capacitive redox material with Faradaic materials for the design of advanced MCDI electrodes for real-life Li+ extraction applications.
Collapse
Affiliation(s)
- Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Science and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Gokul Bhaskaran
- NanoBio High-Tech Materials Research Center, Department of Biological Science and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Seung-Kyu Hwang
- NanoBio High-Tech Materials Research Center, Department of Biological Science and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Tae-Gong Ryu
- Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Science and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
13
|
Zhang J, Cheng Z, Qin X, Gao X, Yun R, Xiang X. Bifunctional Modification Enhances Lithium Extraction from Brine Using a Titanium-Based Ion Sieve Membrane Electrode. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37302102 DOI: 10.1021/acsami.3c04682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Salt lake brine has become a promising lithium resource, but it remains challenging to separate Li+ ions from the coexisting ions. We designed a membrane electrode having conductive and hydrophilic bifunctionality based on the H2TiO3 ion sieve (HTO). Reduced graphene oxide (RGO) was combined with the ion sieve to improve electrical conductivity, and tannic acid (TA) was polymerized on the surface of ion sieve to enhance hydrophilicity. These bifunctional modification at the microscopic level improved the electrochemical performance of the electrode and facilitated ion migration and adsorption. Poly(vinyl alcohol) (PVA) was used as a binder to further intensify the macroscopic hydrophilicity of the HTO/RGO-TA electrode. Lithium adsorption capacity of the modified electrode in 2 h reached 25.2 mg g-1, more than double that of HTO (12.0 mg g-1). The modified electrode showed excellent selectivity for Na+/Li+ and Mg2+/Li+ separation and good cycling stability. The adsorption mechanism follows ion exchange, which involves H+/Li+ exchange and Li-O bond formation in the [H] layer and [HTi2] layer of HTO.
Collapse
Affiliation(s)
- Junxiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zeyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinbo Qin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xi Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rongping Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| |
Collapse
|
14
|
Tu X, Liu Y, Wang K, Ding Z, Xu X, Lu T, Pan L. Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization. J Colloid Interface Sci 2023; 642:680-690. [PMID: 37031475 DOI: 10.1016/j.jcis.2023.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
Prussian blue analogs (PBAs) have gained much attention in the capacitive deionization (CDI) field because of their rigid open structure and good energy storage capacity. However, their desalination performance is still to be improved for practical application. Herein, we reported the NiCoFe ternary-metal PBAs materials and explored their application as Na+ capturing electrode in rocking-chair capacitive deionization (RCDI) system. On the one hand, the introduction of Ni2+ into CoFe PBA can effectively reduce the lattice changes in the (dis)charging process.On the other hand, the RCDI system with symmetrical structure could avoid the performance deficiency caused by the unbalanced capacity of common HCDI system. Due to the rationalized RCDI cell configuration and ternary-metal PBAs with improved stability, the NiCoFe-PBAs-based RCDI exhibits amazing desalination performance with maximum capacity of 131.4 mg·g-1 and rate of 0.46 mg·g-1·s-1 as well as optimum stability with 90.7 % capacity retention over 300 cycles, surpassing those of PBAs based CDI system reported previously. The special strategy in this work offers inspiration via optimizing the cell structure and electrode materials for the promising development of CDI systems.
Collapse
Affiliation(s)
- Xubin Tu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Kai Wang
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
15
|
Hybrid of Pyrazine based π-conjugated Organic Molecule and 2D MXene for Fast and Efficient Hybrid Capacitive Deionization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization. J Colloid Interface Sci 2023; 630:372-381. [DOI: 10.1016/j.jcis.2022.10.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
17
|
Han DC, Wang SY, Zhang CM, Yue RY, Wang SG, Sun XF. Efficient dual-ions hybrid capacitive system for superior deionization with enhanced kinetics match. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Gao L, Dong Q, Hu C, Qiu J. Surfactant-assisted self-assembly of flower-like ultrathin vanadium disulfide nanosheets for enhanced hybrid capacitive deionization. J Colloid Interface Sci 2022; 627:1011-1020. [PMID: 35907326 DOI: 10.1016/j.jcis.2022.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Increasing the salt adsorption capacity (SAC) and durability of electrode materials for hybrid capacitive deionization (HCDI) remain grand challenges. Herein, highly electro-adsorptive and durable vanadium disulfide (VS2) electrode material obtained by a surfactant-assisted hydrothermal method is reported. The distinct three-dimensional flower-like architecture and ultrathin thickness of VS2 nanosheets play a vital role in boosting HCDI performance by exposing a large number of accessible adsorption sites and facilitating the mass transfer of sodium ions. When used in the HCDI system, the flower-like VS2 electrode delivers a high salt adsorption capacity of 72 mg g-1 in 500 mg L-1 NaCl solution at 1.6 V, outperforming the bulk VS2 counterpart with a relatively increased thickness of nanosheets. Moreover, after 10 h of cycling test, the SAC of the flower-like VS2-based HCDI system remains at 93 % of the initial value, showing excellent operation stability. This surfactant-assisted morphology engineering of VS2 nanosheets with ultrathin thickness and unique three-dimensional architecture provides new insight into designing layered electrode materials for efficient HCDI.
Collapse
Affiliation(s)
- Lijun Gao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qiang Dong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chao Hu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Zhu G, Chen L, Lu T, Zhang L, Hossain MSA, Amin MA, Yamauchi Y, Li Y, Xu X, Pan L. Cu-based MOF-derived architecture with Cu/Cu 2O nanospheres anchored on porous carbon nanosheets for efficient capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 210:112909. [PMID: 35157915 DOI: 10.1016/j.envres.2022.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The design of high-performance electrode materials with excellent desalination ability has always been a research goal for efficient capacitive deionization (CDI). Herein, a hybrid architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets (Cu/Cu2O/C) was first synthesized by pyrolyzing a two-dimensional (2D) Cu-based metal-organic framework and then evaluated as a cathode for hybrid CDI. The as-prepared Cu/Cu2O/C exhibits a hierarchically porous structure with a high specific surface area of 305 m2 g-1 and large pore volume of 0.55 cm3 g-1, which is favorable to accelerating ion migration and diffusion. The porous carbon nanosheet matrix with enhanced conductivity will facilitate the Faradaic reactions of Cu/Cu2O nanospheres during the desalination process. The Cu/Cu2O/C hybrid architecture displays a high specific capacitance of 142.5 F g-1 at a scan rate of 2 mV s-1 in 1 M NaCl solution. The hybrid CDI constructed using the Cu/Cu2O/C cathode and a commercial activated carbon anode exhibits a high desalination capacity of 16.4 mg g-1 at an operation voltage of 1.2 V in 500 mg L-1 NaCl solution. Additionally, the hybrid CDI exhibits a good cycling stability with 18.3% decay in the desalination capacity after 20 electrosorption-desorption cycles. Thus, the Cu/Cu2O/C composite is expected to be a promising cathode material for hybrid CDI.
Collapse
Affiliation(s)
- Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lei Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Hu B, Shang X, Nie P, Zhang B, Yang J, Liu J. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. J Colloid Interface Sci 2022; 612:392-400. [PMID: 34999544 DOI: 10.1016/j.jcis.2021.12.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Faced with the strong demand of clean energy, development of lithium source is becoming exceedingly vital. Spinel-type manganese oxide (λ-MnO2) is a typical lithium ion sieve material. Herein, the conductive three-dimensional (3D) lithium ion sieve electrode material was fabricated by in-situ growth of λ-MnO2 on 3D reduced graphene oxide (3D-rGO) matrix for Li extraction by capacitive deionization (CDI). The λ-MnO2 modified rGO (λ-MnO2/rGO) retained the 3D network structure with uniform distribution of λ-MnO2 nanosheets on rGO. Electrochemical characterization demonstrated its high conductivity and fast lithium ion diffusion rate. By adjusting the rGO concentration, λ-MnO2 activity was improved significantly. With λ-MnO2/rGO as a positive electrode (activated carbon as negative electrode), the corresponding CDI system was successfully applied for the selective extraction of Li+. The final rGO content in the λ-MnO2/rGO was attained by thermogravity analysis. With the appropriate rGO content (15.5%), the obtained λ-MnO2/rGO electrode achieved the optimal Li+ adsorption amount. The corresponding λ-MnO2/rGO-based CDI cell showed good selectivity and high cycle stability. When applied to the extraction of lithium from synthetic salt lake brine, the electrode also obtained high Li+ adsorption amount with good selectivity.
Collapse
Affiliation(s)
- Bin Hu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Xiaohong Shang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Pengfei Nie
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Boshuang Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, PR China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
21
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
22
|
Multifunctional high entropy oxides incorporated functionalized biowaste derived activated carbon for electrochemical energy storage and desalination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Wang S, Li Z, Wang G, Wang Y, Ling Z, Li C. Freestanding Ti 3C 2T x MXene/Prussian Blue Analogues Films with Superior Ion Uptake for Efficient Capacitive Deionization by a Dual Pseudocapacitance Effect. ACS NANO 2022; 16:1239-1249. [PMID: 34941266 DOI: 10.1021/acsnano.1c09036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring and designing high-performance Faradaic electrode materials is of great significance to enhance the desalination performance of hybrid capacitive deionization (HCDI). Herein, open and freestanding films (MXene/Prussian blue analogues (PBAs), specifically, MXene/NiHCF and MXene/CuHCF) were prepared by vacuum filtration of a mixed solution of PBAs nanoparticles and a Ti3C2Tx MXene dispersion and directly used as HCDI electrodes. The conductive MXene nanosheets bridge the PBAs nanoparticles to form a three-dimensional (3D) conductive network structure, which can accelerate the salt ion and electron diffusion/transport kinetics for HCDI. Additionally, the PBAs nanoparticles can prevent the restacking of MXene nanosheets, expand their interlayer spacing, and facilitate the rapid diffusion and storage of ions. Benefiting from the dual pseudocapacitance and synergistic effect of PBAs and MXene, the obtained MXene/PBAs films show superior properties, with a high desalination capacity (85.1 mg g-1 for the MXene/NiHCF film and 80.4 mg g-1 for the MXene/CuHCF film) and an ultrafast salt-removal rate, much higher than those of other Faradaic electrodes. The synergistic effect, the adsorption of Na+ ions, and the enhanced conductivity of MXene/PBAs films were demonstrated through first-principles calculations. This paper offers a simple and convenient method for the design of freestanding HCDI electrodes and promotes the rapid development of HCDI technology.
Collapse
Affiliation(s)
- Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Zhuolin Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Yuwei Wang
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changping Li
- School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| |
Collapse
|
24
|
Zhang H, Zhang F, Li A, Zhao B, Li D, Liu Y, Yang Y, Li F, Liu R, Wei Y. Controllable synthesis of Na, K-based titanium oxide nanoribbons as functional electrodes for supercapacitors and separation of aqueous ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By facile controllable preparation, as-synthesized NTO and KTO exhibit remarkable electrochemical behavior for the applications of supercapacitors and capacitive deionization.
Collapse
Affiliation(s)
- Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Fang Zhang
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Aiyang Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Environmental Standard Institute, Ministry of Ecology and Environment, Beijing 100012, P. R. China
| | - Bin Zhao
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Danni Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
| | - Fangzhou Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Rui Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
25
|
Liu N, Ren P, Saleem A, Feng W, Huo J, Ma H, Li S, Li P, Huang W. Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61669-61680. [PMID: 34915703 DOI: 10.1021/acsami.1c20145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive deionization (CDI) electrodes were developed for the simultaneous decontamination of bacteria and heavy metal contaminants. Polyhexamethylene guanidine (PHMG), an antibacterial polymer, was deposited on the surface of the activated carbon (AC) electrode with the assistance of mussel-inspired polydopamine (PDA) chemistry. The main characterization results proved successful co-deposition of PDA and PHMG on the AC electrode, forming a hydrophilic coating layer in one step. Electrochemical analyses indicated that the AC-PDA/PHMG electrodes presented satisfactory capacitive behaviors, with outstanding salt adsorption capacity and cycling stability. The modified electrodes also exhibit excellent disinfection performance and heavy metal adsorption performance. The bacterial elimination rate of co-deposited electrodes grew along with the increase in the PHMG content. Particularly, AC-PDA/PHMG2 electrodes successfully removed and deactivated 99.11% Escherichia coli and 98.67% Pseudomonas aeruginosa (104 CFU mL-1) in water within 60 min. Furthermore, three flow cells made by AC-PDA/PHMG2 electrodes connected in series achieved efficient removal of salt, heavy metals such as lead and cadmium, and bacteria simultaneously, which indicated that the adsorption performance is significantly improved compared with pristine AC electrodes. These results denote the enormous potential of this one-step prepared multi-functional electrodes for facile and effective water purification using CDI technology.
Collapse
Affiliation(s)
- Nian Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Panyu Ren
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Huifang Ma
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
26
|
Chen TH, Chen YA, Tsai SW, Wang DM, Hou CH. Development of an integrated capacitive-electrodialysis process (CapED) for continuous, low-energy electrochemical deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Fateminia R, Rowshanzamir S, Mehri F. Synergistically enhanced nitrate removal by capacitive deionization with activated carbon/PVDF/polyaniline/ZrO2 composite electrode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Shi W, Xue M, Qian X, Xu X, Gao X, Zheng D, Liu W, Wu F, Gao C, Shen J, Cao X. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000128. [PMID: 34377532 PMCID: PMC8335821 DOI: 10.1002/gch2.202000128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Indexed: 05/12/2023]
Abstract
Capacitive deionization (CDI) as a novel energy and cost-efficient water treatment technology has attracted increasing attention. The recent development of various faradaic electrode materials has greatly enhanced the performance of CDI as compared with traditional carbon electrodes. Prussian blue (PB) has emerged as a promising CDI electrode material due to its open framework for the rapid intercalation/de-intercalation of sodium ions. However, the desalination efficiency, and durability of previously reported PB-based materials are still unsatisfactory. Herein, a self-template strategy is employed to prepare a Poly(3,4-ethylenedioxythiophene) (PEDOT) reinforced cobalt hexacyanoferrate nanoflakes anchored on carbon cloth (denoted as CoHCF@PEDOT). With the high conductivity and structural stability achieved by coupling with a thin PEDOT layer, the as-prepared CoHCF@PEDOT electrode exhibits a high capacity of 126.7 mAh g-1 at 125 mA g-1. The fabricated hybrid CDI cell delivers a high desalination capacity of 146.2 mg g-1 at 100 mA g-1, and good cycling stability. This strategy provides an efficient method for the design of high-performance faradaic electrode materials in CDI applications.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Meiting Xue
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xin Qian
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xilian Xu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xinlong Gao
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Dong Zheng
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Wenxian Liu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Fangfang Wu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Congjie Gao
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Jiangnan Shen
- Center for Membrane and Water Science & TechnologyCollege of Chemical EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| | - Xiehong Cao
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China
| |
Collapse
|
29
|
Gong A, Zhao Y, Liang B, Li K. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination. J Colloid Interface Sci 2021; 605:432-440. [PMID: 34332416 DOI: 10.1016/j.jcis.2021.07.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
As a promising intercalation material for capacitive deionization (CDI), Prussian blue (PB) and its analogues (PBAs) have the superiority of high theoretical capacity and easy synthesis. But they often suffer from low conductivity and severe crystal phase transition, resulting in inferior desalination capacity and poor cycling stability. Herein, the dual strategy of structural optimization and carbon-based materials introduction is proposed to enhance the desalination performance of PBAs. Stepwise hollow structure formed by surface etching has been proved to be more outstanding than cubic structure. Enlarged the specific surface area, the contact area with the electrolyte increases, therefore, more active sites are exposed. Besides, the etching of external surfaces provides more buffer space, improves the tolerance to crystal phase transition, and enhances the cycling stability. The introduction of carbon nanotubes brings high conductivity. Specifically, the desalination test shows that stepwise hollow Prussian blue/carbon nanotubes composite delivers a high desalination capacity of 103.4 mg g-1 with outstanding cycling stability. Moreover, the low energy consumption of 0.23 Wh g-1 is also suitable for practical application. The dual strategy opens a window to design advanced electrode materials for CDI.
Collapse
Affiliation(s)
- Ao Gong
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300071, China
| | - Yubo Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300071, China
| | - Bolong Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kexun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Xiong Y, Yu F, Arnold S, Wang L, Presser V, Ren Y, Ma J. Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9754145. [PMID: 34806019 PMCID: PMC8566195 DOI: 10.34133/2021/9754145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Faradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity (117 ± 6 mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.
Collapse
Affiliation(s)
- Yuecheng Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Stefanie Arnold
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Lei Wang
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Volker Presser
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- Saarene-Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Yifan Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|