1
|
Mansouri E, Rajabpour S, Mesbahi A. In silico estimation of polyethylene glycol coating effect on metallic NPs radio-sensitization in kilovoltage energy beams. BMC Chem 2024; 18:206. [PMID: 39439010 PMCID: PMC11515684 DOI: 10.1186/s13065-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Nanoparticles (NPs) as radiosensitizers present a promising strategy for enhancing radiotherapy effectiveness, but their potential is significantly influenced by the properties of their surface coating, which can impact treatment outcomes. Most Monte Carlo studies have focused on metallic NPs without considering the impact of coating layers on radiosensitization. In this study, we aim to assess both the physical and radiobiological effects of nanoparticle coatings in nanoparticle-based radiation therapy. MATERIALS AND METHODS In this simulation study, we used Geant4 Monte Carlo (MC) toolkit (v10.07.p02) and simulated the bismuth, gold, iridium and gadolinium NPs coated with polyethylene glycol (PEG-400: Density: 1.13 g/cm³, Molar mass: 380-420 g/mol) as radiosensitizer for photon beams of 30, 60 and 100 keV. Secondary electron number and reactive oxygen species enhancement factor were estimated. Also, dose enhancement factor (DEF) was determined in spherical shells with logarithmic scale thickness from the nanoparticle surface to 4 mm. RESULTS Secondary electron emission was highest at 30 keV for gold, bismuth, and iridium NPs, while gadolinium NPs peaked at 60 keV. Coating reduced electron emissions across all energies, with thicker coatings leading to a more significant decrease. DEF values declined with increasing radial distance from the NP surface and were lower with thicker coatings. For gadolinium NPs, DEF behavior differed due to K-edge energy effects. Reactive species generation varied, showing maximum production at 30 keV for gold, bismuth, and iridium NPs, while gadolinium NPs showed peak activity at 60 keV. PEG coatings enhanced reactive species formation at 100 keV. CONCLUSION The findings indicate that the coating layer thickness and material not only influence the emission of secondary particles and DEF but also affect the generation of reactive species from water radiolysis. Specifically, thicker coatings reduce secondary particle emission and DEF, while PEG coatings demonstrate a dual behavior, offering both protective and enhancing effects depending on photon energy. These insights underscore the importance of optimizing NP design and coating in future studies to maximize therapeutic efficacy in nanoparticle-based radiation therapy.
Collapse
Affiliation(s)
- Elham Mansouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Rajabpour
- Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Orava H, Paakkari P, Jäntti J, Honkanen MKM, Honkanen JTJ, Virén T, Joenathan A, Tanska P, Korhonen RK, Grinstaff MW, Töyräs J, Mäkelä JTA. Triple contrast computed tomography reveals site-specific biomechanical differences in the human knee joint-A proof of concept study. J Orthop Res 2024; 42:415-424. [PMID: 37593815 DOI: 10.1002/jor.25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.
Collapse
Affiliation(s)
- Heta Orava
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Miitu K M Honkanen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Honkanen MKM, Mohammadi A, Te Moller NCR, Ebrahimi M, Xu W, Plomp S, Pouran B, Lehto VP, Brommer H, van Weeren PR, Korhonen RK, Töyräs J, Mäkelä JTA. Dual-contrast micro-CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Vet J 2023; 55:315-324. [PMID: 35353399 PMCID: PMC10084070 DOI: 10.1111/evj.13573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Post-traumatic osteoarthritis is a frequent joint disease in the horse. Currently, equine medicine lacks effective methods to diagnose the severity of chondral defects after an injury. OBJECTIVES To investigate the capability of dual-contrast-enhanced computed tomography (dual-CECT) for detection of chondral lesions and evaluation of the severity of articular cartilage degeneration in the equine carpus ex vivo. STUDY DESIGN Pre-clinical experimental study. METHODS In nine Shetland ponies, blunt and sharp grooves were randomly created (in vivo) in the cartilage of radiocarpal and middle carpal joints. The contralateral joint served as control. The ponies were subjected to an 8-week exercise protocol and euthanised 39 weeks after surgery. CECT scanning (ex vivo) of the joints was performed using a micro-CT scanner 1 hour after an intra-articular injection of a dual-contrast agent. The dual-contrast agent consisted of ioxaglate (negatively charged, q = -1) and bismuth nanoparticles (BiNPs, q = 0, diameter ≈ 0.2 µm). CECT results were compared to histological cartilage proteoglycan content maps acquired using digital densitometry. RESULTS BiNPs enabled prolonged visual detection of both groove types as they are too large to diffuse into the cartilage. Furthermore, proportional ioxaglate diffusion inside the tissue allowed differentiation between the lesion and ungrooved articular cartilage (3 mm from the lesion and contralateral joint). The mean ioxaglate partition in the lesion was 19 percentage points higher (P < 0.001) when compared with the contralateral joint. The digital densitometry and the dual-contrast CECT findings showed good subjective visual agreement. MAIN LIMITATIONS Ex vivo study protocol and a low number of investigated joints. CONCLUSIONS The dual-CECT methodology, used in this study for the first time to image whole equine joints, is capable of effective lesion detection and simultaneous evaluation of the condition of the articular cartilage.
Collapse
Affiliation(s)
- Miitu K M Honkanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopedics, University Medical Center Utrecht, The Netherlands
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Wen Y, Zhu W, Zhang X, Sun SK. Fabrication of gelatin Bi 2S 3 capsules as a highly sensitive X-ray contrast agent for gastrointestinal motility assessment in vivo. RSC Adv 2022; 12:13645-13652. [PMID: 35530383 PMCID: PMC9069310 DOI: 10.1039/d2ra00993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Tiny BaSO4 rod-based X-ray imaging is the most frequently-used method for clinical diagnosis of gastrointestinal motility disorders. The BaSO4 rods usually have a small size to pass through the gastrointestinal tract smoothly, but suffer from unavoidably low sensitivity. Herein, we developed Bi2S3 capsules as a high-performance X-ray contrast agent for gastrointestinal motility assessment for the first time. The Bi2S3 capsules were synthesized by the encapsulation of commercial Bi2S3 powder into commercial gelatin capsules and subsequent coating of ultraviolet-curable resin. The prepared Bi2S3 capsules showed excellent biocompatibility in vitro and in vivo and superior X-ray attenuation ability due to the large atomic number and high K-edge value of Bi. The developed Bi2S3 capsules can serve as a small but highly sensitive X-ray contrast agent to quantitatively assess gastrointestinal motility in a vincristine-induced gastrointestinal motility disorder model in vivo by X-ray, CT and spectral CT imaging successfully, solving the intrinsic drawbacks of clinically used BaSO4.
Collapse
Affiliation(s)
- Ya Wen
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Wang Zhu
- Department of Radiographic Center, Wuhan Children's Hospital, Tongji Medical College of Huazhong University of Science and Technology Wuhan 430015 China
| | - Xuejun Zhang
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Shao-Kai Sun
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| |
Collapse
|
5
|
Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv 2021; 11:24722-24746. [PMID: 35481029 PMCID: PMC9036962 DOI: 10.1039/d1ra04273d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Vanya Nayak
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh (221005) India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| |
Collapse
|