1
|
Tan H, Shan G. Computational screening and functional tuning of chemically stable metal organic frameworks for I 2/CH 3I capture in humid environments. iScience 2024; 27:109096. [PMID: 38380246 PMCID: PMC10877947 DOI: 10.1016/j.isci.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
High chemical stability is of vital significance in rendering metal organic frameworks (MOFs) as promising adsorbents for capturing leaked radioactive nuclides, under real nuclear industrial conditions with high humidity. In this work, grand canonical Monte Carlo (GCMC) and density functional theory (DFT) methods have been employed to systematically evaluate I2/CH3I capture performances of 21 experimentally confirmed chemically stable MOFs in humid environments. Favorable structural factors and the influence of hydrophilicity for iodine capture were unveiled. Subsequently, the top-performing MIL-53-Al with flexible tunability was functionalized with different functional groups to achieve the better adsorption performance. It has been revealed that the adsorption affinity and pore volume were two major factors altered by the functionalization of polar functional groups, which collectively influenced the iodine adsorption properties. In general, this work has screened the chemically stable high-performance MOF iodine adsorbents and provided comprehensive insights into the key factors affecting I2/CH3I uptake and separation in humid environments.
Collapse
Affiliation(s)
- Haoyi Tan
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China
| | - Guangcun Shan
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Robertson GP, Mosca S, Castillo-Blas C, Son FA, Farha OK, Keen DA, Anzellini S, Bennett TD. Survival of Zirconium-Based Metal-Organic Framework Crystallinity at Extreme Pressures. Inorg Chem 2023. [PMID: 37326492 DOI: 10.1021/acs.inorgchem.2c04428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent research on metal-organic frameworks (MOFs) has shown a shift from considering only the crystalline high-porosity phases to exploring their amorphous counterparts. Applying pressure to a crystalline MOF is a common method of amorphization, as MOFs contain large void spaces that can collapse, reducing the accessible surface area. This can be either a desired change or indeed an unwanted side effect of the application of pressure. In either case, understanding the MOF's pressure response is extremely important. Three such MOFs with varying pore sizes (UiO-66, MOF-808, and NU-1000) were investigated using in situ high-pressure X-ray diffraction and Raman spectroscopy. Partial crystallinity was observed in all three MOFs above 10 GPa, along with some recovery of crystallinity on return to ambient conditions if the frameworks were not compressed above thresholds of 13.3, 14.2, and 12.3 GPa for UiO-66, MOF-808, and NU-1000, respectively. This threshold was marked by an unexpected increase in one or more lattice parameters with pressure in all MOFs. Comparison of compressibility between MOFs suggests penetration of the pressure-transmitting oil into MOF-808 and NU-1000. The survival of some crystallinity above 10 GPa in all of these MOFs despite their differing pore sizes and extents of oil penetration demonstrates the importance of high-pressure characterization of known structures.
Collapse
Affiliation(s)
- Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire CB3 0FS, U.K
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Sara Mosca
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire CB3 0FS, U.K
| | - Florencia A Son
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Simone Anzellini
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire CB3 0FS, U.K
| |
Collapse
|
3
|
Pan Y, Sanati S, Nadafan M, Abazari R, Gao J, Kirillov AM. Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance. Inorg Chem 2022; 61:18873-18882. [PMID: 36375112 PMCID: PMC9775467 DOI: 10.1021/acs.inorgchem.2c02709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.
Collapse
Affiliation(s)
- Yangdan Pan
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Soheila Sanati
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran
| | - Marzieh Nadafan
- Department
of Physics, Shahid Rajaee Teacher Training
University, 16788-15811Tehran, Iran
| | - Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran,
| | - Junkuo Gao
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China,
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001Lisbon, Portugal,
| |
Collapse
|
4
|
Wang X, Zou Y, Zhang Y, Marchetti B, Liu Y, Yi J, Zhou XD, Zhang J. Tin-based Metal Organic Framework Catalysts for High-Efficiency Electrocatalytic CO2 Conversion into Formate. J Colloid Interface Sci 2022; 626:836-847. [DOI: 10.1016/j.jcis.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
|
5
|
Zhao L, Gong M, Yang J, Gu J. Switchable Ionic Transportation in the Nanochannels of the MOFs Triggered by Light and pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13952-13960. [PMID: 34788532 DOI: 10.1021/acs.langmuir.1c02579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of a biomimetic ionic channel is of great significance for the fabrication of smart biodevices or logic circuit. Inspired by the selective permeability of the cell membrane toward bioions, a light-induced and pH-modulated artificial nanochannel is herein prepared by integrating the multistimuli-response molecule of carboxylated spiropyran (SP-COOH) into the frameworks of NU-1000 (Zr-based MOFs defined by Northwestern University). The loading density of the SP-COOH could reach as high as 7 wt % while keeping unchanged crystallinity and high porosity. Thanks to the precise matching of pore size of NU-1000 and molecular dimensions of SP-COOH, the loaded molecules could proceed free and reversible for isomerization between the hydrophilic and hydrophobic states. The ion-switchable characteristics of the channel are implemented by the amphiphilic change of the light-controlled gate molecule. Additionally, in the hydrophilic state, the channel presents reversible affinity toward cations or anions due to the reverse charge state induced by pH, thus constructing a pH-controlled subgate. Taking [Ru(NH3)6]3+ and [Fe(NH3)]3- as the model cation and anion, their redox peak currents occur as reversible change under different signal combinations of light and pH. Moreover, in accordance with the ionic selective permeability, several logic circuits/devices are designed to display the relationships between exogenous stimuli and ionic transportations in a computer language, prefiguring their wide application prospects in electronic devices and life sciences.
Collapse
Affiliation(s)
- Liwei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Jiang D, Huang C, Zhu J, Wang P, Liu Z, Fang D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|