1
|
Duan M, Li B, He Y, Zhao Y, Liu Y, Zou B, Liu Y, Chen J, Dai R, Li X, Jia F. A CG@MXene nanocomposite-driven E-CRISPR biosensor for the rapid and sensitive detection of Salmonella Typhimurium in food. Talanta 2024; 266:125011. [PMID: 37544254 DOI: 10.1016/j.talanta.2023.125011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
In this study, we developed a novel electrochemical biosensor based on CRISPR/Cas12a (E-CRISPR) for the rapid and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The CRISPR/Cas12a system was applied to identify S. Typhimurium gene and induce signal changes in electrochemical measurement. The colloidal gold and MXene (CG@MXene) nanocomposites were synthesized and immobilized to improve the performance of the biosensor by decreasing the background noise. The formation process of CG@MXene was well characterized, and experiment conditions were fully optimized. Under the optimal conditions, the proposed E-CRISPR biosensor exhibited excellent sensitivity for S. Typhimurium, with a limit of detection (LOD) of 160 CFU/mL, and great specificity against other common foodborne pathogens. Furthermore, the feasibility of the E-CRISPR biosensor was evaluated by analyzing S. Typhimurium-spiked chicken samples, with a recovery rate ranging from 100.46% to 106.37%. In summary, this research proposed a novel E-CRISPR biosensor from a new perspective to detect S. Typhimurium which can be an alternative approach for bacterial detection in the food supply chain.
Collapse
Affiliation(s)
- Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bingyan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Wang K, Zhu N, Li Y, Zhang H, Wu B, Cui J, Tang J, Yang Z, Zhu F, Zhang Z. Poly-adenine-mediated tetrahedral DNA nanostructure with multiple target-recognition sites for ultrasensitive and rapid electrochemical detection of Aflatoxin B1. Anal Chim Acta 2023; 1283:341947. [PMID: 37977777 DOI: 10.1016/j.aca.2023.341947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are widely used in the development of electrochemical biosensors due to their structural stability, programmability, and strong interfacial orderliness. However, the complex modifications on the electrode and the single vertex target recognition of the TDNs limit their applications in electrochemical biosensing. Herein, we developed a universal detection system based on a novel polyadenine-based tetrahedral DNA nanostructure (ATDN) using Aflatoxin B1 (AFB1) as the model target for analysis. In the absence of target AFB1, the signal probes (SP) modified with ferrocene would be anchored by five aptamers on ATDN. The target capture by aptamers led to a release of SP from the electrode surface, resulting in a significant reduction of the electrochemical signal. This new nanostructure was not only dispensed with multi-step electrode modifications and strong mechanical rigidity but also had five modification sites which enhanced the detection sensitivity for the target. As a result, this biosensor shows good analytical performance in the linear range of 1 fg mL-1 to 1 ng mL-1, exhibiting a low detection limit of 0.33 fg mL-1. Satisfactory accuracy has also been demonstrated through good recoveries (95.2%-98.9%). The proposed new tetrahedral DNA nanostructure can provide a more rapid and sensitive alternative to previous electrochemical sensors based on the conventional TDN. Since DNA sequences can be designed flexibly, the sensing platform in this strategy can be extended to detect various targets in different fields.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yumo Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hu Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China.
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Milton Keynes, MK43 0AL, UK
| | - Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Bai X, Gong W, Guo Y, Zhu D, Li X. Detection of saxitoxin by a SERS aptamer sensor based on enzyme cycle amplification technology. Analyst 2023; 148:2327-2334. [PMID: 37097282 DOI: 10.1039/d3an00330b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Saxitoxin (STX) is a typical toxic guanidinium neurotoxin, one of the paralytic shellfish poisons (PSP), which poses a serious threat to human health. In this paper, a simple and sensitive SERS aptamer sensor (abbreviated as AuNP@4-NTP@SiO2) for the quantitative determination of STX was developed. Hairpin aptamers of saxitoxin are modified on magnetic beads and used as recognition elements. In the presence of STX, DNA ligase, and the rolling circle template (T1), a rolling circle amplification reaction was triggered to produce long single-stranded DNA containing repetitive sequences. The sequence can be hybridized with the SERS probe to realize the rapid detection of STX. Due to the inherent merits of its components, the obtained AuNP@4-NTP@SiO2 SERS aptamer sensor manifests excellent sensing performance for STX detection with a wide linear range from 2.0 × 10-10 mol L-1 to 5.0 × 10-4 mol L-1 and a lower detection limit of 1.2 × 10-11 mol L-1. This SERS sensor can provide a strategy for the micro-detection of other biological toxins by changing the aptamer sequence.
Collapse
Affiliation(s)
- Xinna Bai
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Weifang Gong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Yaxin Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Di Zhu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| |
Collapse
|
4
|
Wei G, Fan Q, Hong N, Cui H, Zhang W, Rustam M, Alim A, Jiang T, Dong H, Fan H. A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Tang T, Liu Y, Jiang Y. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chem Res Chin Univ 2022; 38:866-878. [PMID: 35530120 PMCID: PMC9069955 DOI: 10.1007/s40242-022-2084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/31/2022]
Abstract
Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.
Collapse
Affiliation(s)
- Tianwei Tang
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
| | - Yinghuan Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P. R. China
| |
Collapse
|
6
|
Malanina AN, Kuzin YI, Ivanov AN, Ziyatdinova GK, Shurpik DN, Stoikov II, Evtugyn GA. Polyelectrolyte Polyethylenimine–DNA Complexes in the Composition of Voltammetric Sensors for Detecting DNA Damage. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liu Y, Lin Z, Zheng Z, Zhang Y, Shui L. Accurate Isolation of Circulating Tumor Cells via a Heterovalent DNA Framework Recognition Element-Functionalized Microfluidic Chip. ACS Sens 2022; 7:666-673. [PMID: 35113538 DOI: 10.1021/acssensors.1c02692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of circulating tumor cells (CTCs) has provided a noninvasive and efficient approach for early diagnosis, treatment, and prognosis of cancer. However, efficient capture of CTCs in the clinical environment is very challenging because of the extremely rare and heterogeneous expression of CTCs. Herein, we fabricated a multimarker microfluidic chip for the enrichment of heterogeneous CTCs from peripheral blood samples of breast cancer patients. The multimarker aptamer cocktail DNA nanostructures (TP-multimarker) were modified on a deterministic lateral displacement (DLD)-patterned microfluidic chip to enhance the capture efficiency through the size selection effect of DLD arrays and the synergistic effect of multivalent aptamers. As compared to a monovalent aptamer-modified chip, the multimarker chip exhibits enhanced capture efficiency toward both high and low epithelial cell adhesion molecule expression cell lines, and the DNA nanostructure-functionalized chip enables the accurate capture of different phenotypes of CTCs. In addition, the DNA nanoscaffold makes nucleases more accessible to the aptamers to release cells with molecular integrity and outstanding cell viability.
Collapse
Affiliation(s)
- Yan Liu
- Joint Laboratory of Optofluidic Technology and Systems, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziwei Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lingling Shui
- Joint Laboratory of Optofluidic Technology and Systems, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
van Dongen JE, Spoelstra LR, Berendsen JTW, Loessberg-Zahl JT, Eijkel JCT, Segerink LI. A Multiplexable Plasmonic Hairpin-DNA Sensor Based On Target-specific Tether Dynamics. ACS Sens 2021; 6:4297-4303. [PMID: 34851614 PMCID: PMC8715532 DOI: 10.1021/acssensors.1c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The need for measurements
of multiple biomarkers simultaneously
at subnanomolar concentrations asks for the development of new sensors
with high sensitivity, specificity, precision, and accuracy. Currently,
multiplexed sensing in single molecule sensors increases the complexity
of the system in terms of reagents and sample read-out. In this letter,
we propose a novel approach to multiplex hairpin-based single-DNA
molecule sensors, which overcomes the limitations of the present approaches
for multiplexing. By target-dependent ssDNA hairpin design, we can
create DNA tethers that have distinct tether dynamics upon target
binding. Our numerical model shows that by changing the stem length
of the ssDNA hairpin, significantly different dynamic tether behavior
will be observed. By exploiting the distance-dependent coupling of
AuNPs to gold films, we can probe this dynamic behavior along the z-axis using a simple laser equipped microscope.
Collapse
Affiliation(s)
- Jeanne Elisabeth van Dongen
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Laurens Rudi Spoelstra
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Johanna Theodora Wilhelmina Berendsen
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Joshua Taylor Loessberg-Zahl
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Jan Cornelis Titus Eijkel
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| | - Loes Irene Segerink
- BIOS Lab on a Chip Group, MESA+ & TechMed Institutes, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
10
|
Zhang YP, Wang HP, Dong RL, Li SY, Wang ZG, Liu SL, Pang DW. Proximity-induced exponential amplification reaction triggered by proteins and small molecules. Chem Commun (Camb) 2021; 57:4714-4717. [PMID: 33977980 DOI: 10.1039/d1cc00583a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We proposed a method to regulate nucleic acid polymerization by proximity and designed an ultrasensitive biosensor based on proximity-induced exponential amplification reaction for proximity assay of proteins (streptavidin) and small molecules (adenosine triphosphate), which allows us to detect a variety of interesting targets by simply changing the binding sites of DNA.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Ruo-Lan Dong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Si-Yao Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
11
|
He X, Dong J, Han H, Sun N, Shi W, Lu X, Jia H, Lu X. A Novel Electrochemical Aptasensor for the Ultrasensitive Detection of Adenosine Triphosphate Based on DNA-Templated Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35561-35567. [PMID: 34296595 DOI: 10.1021/acsami.1c10173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adenosine triphosphate (ATP) is a small but significant biological molecule that plays an important role in regulating cellular metabolism processes. Accurate and sensitive analytical techniques for detecting ATP are urgently needed. Herein, a new electrochemical aptasensor was designed in light of DNA-templated copolymers that parallel to the electrode for sensitive gauging of ATP. The ATP aptamer decorated by the electronic medium ferrocene can be regarded as a ″bridge″ connecting two DNA-templated copolymers. When ATP exists, because of the extraordinary binding selectivity of DNA-templated copolymers for target ATP, the rapid electron transfer of ferrocene was beneficial to the sensitive detection of target ATP. Specifically, our parallel DNA copolymers are more stable than upright DNA copolymers and have a faster signal transmission because of the close distance to the electrode; meanwhile, the nonspecific pollution is less. Consequently, the developed novel aptasensor exhibited a wide range of linear response toward ATP that was from 0.1 to 10 000 pM and high selectivity with a detection limit down to 11.5 fM. The electrochemical aptasensor has a broad application prospect in the detection of small biological molecules.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jiandi Dong
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Huimin Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Nan Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Wenyu Shi
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Xiong Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hui Jia
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
12
|
Saha U, Todi K, Malhotra BD. Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. NANOSCALE 2021; 13:10305-10319. [PMID: 34086027 DOI: 10.1039/d1nr02409d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA is known to be ubiquitous in nature as it is the controlling unit for genetic information storage in most living organisms. Lately, there has been a surge in studies relating to the use of DNA as a biomaterial for various biomedical applications such as biosensing, therapeutics, and drug delivery. The role of DNA as a bioreceptor in biosensors has been known for a long time. DNA-based biosensors are gradually evolving into highly sophisticated and sensitive molecular devices. The current realization of DNA-based biosensors embraces the unique structural and functional properties of DNA in the form of a biopolymer. The interesting properties of DNA, such as self-assembly, programmability, catalytic activity, dynamic behavior, and precise molecular recognition, have led to the emergence of innovative DNA assembly based electrochemical biosensors. This review article aims to cover the recent progress in the field of DNA-based electrochemical (EC) biosensors. It commences with an introduction to electrochemical biosensors and elucidates the advantages of integrating DNA-based materials into them. Besides this, we discuss the principles of EC biosensors based on different types of DNA-based materials. The article concludes by highlighting the outlook and importance of this interesting field for biomedical developments.
Collapse
Affiliation(s)
- Udiptya Saha
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Keshav Todi
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| |
Collapse
|