1
|
Kuang Q, Feng S, Yang M. Biomimetic Aramid Nanofiber/β-FeOOH Composite Coating for Polypropylene Separators in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39358833 DOI: 10.1021/acsami.4c10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Aramid nanofibers (ANFs), with attractive mechanical and thermal properties, have attracted much attention as key building units for the design of high-performance composite materials. Although great progress has been made, the potential of ANFs as fibrous protein mimetics for controlling the growth of inorganic materials has not been fully revealed, which is critical for avoiding phase separation associated with typical solution blending. In this work, we show that ANFs could template the oriented growth of β-FeOOH nanowhiskers, which enables the synthesis of ANFs/β-FeOOH hybrids as composite coatings for polypropylene (PP) separators in Li-S batteries. The modified PP separator exhibits enhanced mechanical properties, heightened thermal performance, optimized electrolyte wettability, and improved ion conductivity, leading to superior electrochemical properties, including high initial specific capacity, better rate capability, and long cycling stability, which are superior to those of the commercial PP separators. Importantly, the addition of β-FeOOH to ANFs could further contribute to the suppression of lithium polysulfide shuttling by chemical immobilization, inhibition of the growth of lithium dendrites because of the intrinsic high modulus and hardness, and promotion of reaction dynamics due to the catalytic effect. We believe that our work may provide a potent biomimetic pathway for the development of advanced battery separators based on ANFs.
Collapse
Affiliation(s)
- Qingxia Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Carbon Nanotube-Modified Nickel Hydroxide as Cathode Materials for High-Performance Li-S Batteries. NANOMATERIALS 2022; 12:nano12050886. [PMID: 35269373 PMCID: PMC8912414 DOI: 10.3390/nano12050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023]
Abstract
The advantages of high energy density and low cost make lithium–sulfur batteries one of the most promising candidates for next-generation energy storage systems. However, the electrical insulativity of sulfur and the serious shuttle effect of lithium polysulfides (LiPSs) still impedes its further development. In this regard, a uniform hollow mesoporous Ni(OH)2@CNT microsphere was developed to address these issues. The SEM images show the Ni(OH)2 delivers an average size of about 5 μm, which is composed of nanosheets. The designed Ni(OH)2@CNT contains transition metal cations and interlayer anions, featuring the unique 3D spheroidal flower structure, decent porosity, and large surface area, which is highly conducive to conversion systems and electrochemical energy storage. As a result, the as-fabricated Li-S battery delivers the reversible capacity of 652 mAh g−1 after 400 cycles, demonstrating excellent capacity retention with a low average capacity loss of only 0.081% per cycle at 1 C. This work has shown that the Ni(OH)2@CNT sulfur host prepared by hydrothermal embraces delivers strong physical absorption as well as chemical affinity.
Collapse
|
3
|
Feng H, Li D, Cheng B, Song T, Yang R. A cross-linked charring strategy for mitigating the hazards of smoke and heat of aluminum diethylphosphonate/polyamide 6 by caged octaphenyl polyhedral oligomeric silsesquioxanes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127420. [PMID: 34736179 DOI: 10.1016/j.jhazmat.2021.127420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Aluminum diethylphosphonate (ADP) is a highly efficient phosphorus-based flame retardant, widely used in polyamide 6 (PA6). However, ADP/PA6 releases large amounts of heat and smoke under high heat flux, which commonly means serious hazards to life and property. Octaphenyl polyhedral oligomeric silsesquioxanes (OPS) is an organic-inorganic hybrid silicon compound, playing flame retardant role in condensed phase. In this work, combustion behaviors of OPS/ADP/PA6 were investigated by limited oxygen index (LOI), UL94 and cone calorimeter (CONE) tests. The LOI and UL94 rating results did not change obviously, while the CONE data and smoke density data showed the synergistic effect of OPS and ADP in PA6. For 2.5%OPS/7.5%ADP/PA6, the peak values of heat, smoke and CO release rate (pk-HRR, pk-RSR, Ds, max with/without pilot flame and pk-COP) decreased by 60.2%, 82.1%, 45.9%/38.3% and 80.4% respectively, compared with 10%ADP/PA6. Moreover, 2.5%OPS/7.5%ADP/PA6 produced 337.5% more residue than 10%ADP/PA6. TGA, TG-IR, SEM-EDS, XPS and py-GC/MS were used to further explore the synergistic mechanism of OPS and ADP. It was verified that the cross-linked charring strategy apparently has weakened the hazards of smoke and heat of PA6. This work proposed a possible technical approach to solve both fire risk and heat/smoke hazards of PA6.
Collapse
Affiliation(s)
- Haisheng Feng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China; School of Fire Protection Engineering, China People's Police University, 220 Xichang Road, Anci District, 065000 Langfang, PR China
| | - Dinghua Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China.
| | - Bo Cheng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China
| | - Tinglu Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China.
| |
Collapse
|
4
|
Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nat Commun 2022; 13:278. [PMID: 35022406 PMCID: PMC8755825 DOI: 10.1038/s41467-021-27861-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Lithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g−1, up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies. Lithium–sulfur batteries have a high specific capacity, but lithium polysulfide diffusion (LPS) and dendrite growth reduce their cycle life. Here, the authors show a biomimetic aramid nanofiber membrane for effectively suppressing LPS diffusion as well as lithium dendrites while allowing lithium ions to be transported. The membranes resists performance degradation at high temperatures and can be produced at scale by Kevlar recycling.
Collapse
|
5
|
Yang B, Li W, Zhang M, Wang L, Ding X. Recycling of High-Value-Added Aramid Nanofibers from Waste Aramid Resources via a Feasible and Cost-Effective Approach. ACS NANO 2021; 15:7195-7207. [PMID: 33752335 DOI: 10.1021/acsnano.1c00463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance aramid fibers are extensively applied in the civil and military fields. A great deal of waste aramid resources originating from the manufacturing process, spare parts, or end of life cycle are wrongly disposed (i.e., landfill, smash, fibrillation), causing a waste of valuable resources as well as severe environmental pollution. Although aramid nanofibers (ANFs) have recently been recently reported as one of the most promising building blocks due to their excellent properties, they suffer from an extremely high production expenditure, thereby greatly hindering their scale-up application. Herein, in this paper, from a resources-saving and cost-reductional perspective, we present a feasible top-down approach to recycle high value-added ANFs with an affordable cost from various waste aramid resources. The results indicate that although the reclaimed ANFs have a molecular weight reduction of 8.1% compared with the recycled aramid fibers, they still exhibit a molecular weight of 43.0 kg·mol-1 that represents the highest value compared to other methods. It is noteworthy that the fabrication cost of ANFs is significantly reduced (∼7 times) due to the reclamation of waste aramid fibers instead of the expensive virgin aramid fibers. The obtained ANFs show impressive tensile strength (149.2 MPa) and toughness (10.43 MJ·m-3), excellent thermal stabilities (Td of 542 °C), and a high specific surface area (65.2 m2·g-1), which endows them to be promising candidates for constructing advanced materials. Compared to the aramid pulp obtained by the traditional recycling method, ANFs show significant advantages in dimensional homogeneity, aspect ratio, dispersibility, film-forming property, and especially the excellent properties of the ANF film. In addition, the scale-up preparation of ANFs from the recycled waste aramid fibers is carried out, demonstrating it is highly economically viable. Therefore, this work provides a highly feasible and cost-effective recycle system to reclaim the waste aramid resources together with significantly reducing the preparation cost of ANFs.
Collapse
Affiliation(s)
- Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| |
Collapse
|