1
|
Fonseca J, Broto-Ribas A, Jiao L, Pei X. Pickering emulsions stabilized by metal-organic framework nanoparticles. Adv Colloid Interface Sci 2025; 342:103532. [PMID: 40328072 DOI: 10.1016/j.cis.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Pickering emulsions are attractive formulations due to their simplicity, similar to traditional surfactant-based emulsions, and their potential to create functional materials. Recently, Pickering emulsions stabilized by metal-organic framework (MOF) nanoparticles have garnered significant interest. This Review aims to systematize our knowledge of how MOF nanoparticles stabilize Pickering emulsions, providing fundamental insights for advancing this field. We thoroughly examine the emulsification process of Pickering emulsions stabilized by MOF nanoparticles. Additionally, we detail the superstructures derived from these emulsions, including colloidosomes, hydrogel droplets, 3D honeycomb network structures, molecularly imprinted polymers, monoliths, and micromotors. Finally, we discuss challenges and future research opportunities related to this type of emulsion.
Collapse
Affiliation(s)
- Javier Fonseca
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States.
| | - Anna Broto-Ribas
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Li Jiao
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States
| | - Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, PR China
| |
Collapse
|
2
|
Song Z, Liu J, Luo J, Ngai T, Kwok MH, Sun G. Photo-responsive Pickering emulsions triggered by in-situ pH modulation using a photoacid generator. J Colloid Interface Sci 2025; 679:1150-1158. [PMID: 39423681 DOI: 10.1016/j.jcis.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Pickering emulsions that respond to changes in pH by the addition of acid or alkali have been extensively studied, but the development of photo-responsive Pickering emulsions has been more challenging. This study attempts to demonstrate a novel approach to achieve photo-responsiveness in Pickering emulsions by incorporating a photoacid generator (PAG) into the oil phase. Upon UV irradiation, the PAG is expected to release protons (H+), which can then regulate the pH of the emulsion system and control its stability. EXPERIMENTS Amphiphilic colloidal particles obtained by modifying silica particles with poly (2-(dimethylamino)ethyl methacrylate) (SiO2-PDMAEMA) are used to stabilize the Pickering emulsions. The protonation and deprotonation of the SiO2-PDMAEMA particles at different pH values allow for the tuning of emulsion stability. By introducing the PAG into the stable Pickering emulsion system and applying UV irradiation to trigger the in-situ release of H+, the pH of the emulsion is systematically decreased, and the corresponding changes in emulsion stability are investigated. FINDINGS The results show that UV irradiation alone cannot induce emulsion instability. However, when PAG is added to the oil phase, the Pickering emulsions exhibit a significant decrease in pH under UV irradiation, ultimately leading to emulsion destabilization and phase separation. At a UV intensity of 20 mW/cm2 for 2 min, the H+ release from the PAG significantly lower the emulsion's pH, causing the SiO2-PDMAEMA particles to detach from the oil-water interface and resulting in emulsion instability. Higher concentrations of SiO2-PDMAEMA particles in the emulsion require more PAG to induce instability, as confirm by confocal laser scanning microscopy (CLSM) image. This study presents a versatile approach to develop photo-responsive Pickering emulsions which can have potential applications in areas such as drug delivery, cosmetics, and responsive materials.
Collapse
Affiliation(s)
- Zichun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - To Ngai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Liu W, Zhang YQ, Dong ZL, Chen ZX, Li L, Zhao XY, Wu Y, Zhang YY. An Efficient Bifunctional Core-Shell ZIF-90@ZIF-67 Composite as a Stable Pickering Interfacial Catalyst for the Deacetalization-Knoevenagel Tandem Reaction. Chemistry 2025; 31:e202403363. [PMID: 39498512 DOI: 10.1002/chem.202403363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Indexed: 11/20/2024]
Abstract
Exploiting advanced solid particles is crucial to the construction of Pickering emulsions catalysis. Recently, metal-organic frameworks (MOFs) have been used as ideal emulsifiers stabilizing Pickering emulsions for interfacial catalysis. Although Pickering emulsions stabilized by core-shell MOFs have significant importance in practical studies, to date there have been very limited reports on this topic. Herein, ZIF-90@ZIF-67, a core-shell material with simultaneous acid-base bifunctionality, was synthesized by seeded epitaxial growth. It was firstly applied as an emulsifier in Pickering emulsions to catalyze the deacetalization-Knoevenagel tandem reaction, which exhibited excellent catalytic properties and achieved extremely high yields. Additionally, ZIF-90@ZIF-67 showed high stability and remained well repeatable after five cycles. This work provides a platform for the design of structurally and functionally diverse MOF-based Pickering emulsions interfacial catalysis.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yu-Qing Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Zhen-Lin Dong
- Technology Center of Dalian Customs, Dalian, 116001, P. R. China
| | - Zi-Xuan Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Lei Li
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Xin-Yuan Zhao
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yang Wu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yu-Yang Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| |
Collapse
|
4
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
Affiliation(s)
- Chengmei Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiangyao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
5
|
Li Z, Shi Y, Ding Y, Xiong D, Li Z, Wang H, Qiu J, Xuan X, Wang J. Zr-Based MOF-Stabilized CO 2-Responsive Pickering Emulsions for Efficient Reduction of Nitroarenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38307089 DOI: 10.1021/acs.langmuir.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A Pickering emulsion is a natural microreactor for interfacial catalysis in which an emulsifier is critical. Recently, a metal-organic framework (MOF) has attracted attention to emulsify water-organic mixtures for constructing a Pickering emulsion. However, a few stimuli-responsive Pickering emulsions based on MOFs have been reported, and the MOF emulsifiers cannot be regenerated at room temperature. Herein, the Zr-MOF with a rodlike morphology is synthesized using ionic liquid as a modulator and then modified with n-(trimethoxysilylpropyl)imidazole (C3im) to prepare a series of functionalized Zr-MOFs (MOF-C3im). It is found that MOF-C3im is an excellent emulsifier to construct stable and CO2-responsive Pickering emulsions even at low content (>0.20 wt %). Notably, the emulsification and demulsification of the emulsions can be easily and reversibly switched by bubbling of CO2 and N2 alternatively at room temperature because CO2 and imidazole molecules anchored on the Zr-MOF underwent a reversible acid-base reaction, resulting in an obvious change in the wettability of the emulsifier. As a proof of concept, the reduction reactions of nitrobenzene have been successfully carried out in these Pickering emulsions, demonstrating the efficient integration as a microreactor for chemical reaction, product separation, and emulsifier recycling under ambient conditions. This strategy provides an innovative option to develop stimulus-responsive Pickering emulsions for sustainable chemical processes.
Collapse
Affiliation(s)
- Zhuoxue Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yimian Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Dazhen Xiong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaopeng Xuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
6
|
He X, Lu Q. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application. Adv Colloid Interface Sci 2024; 324:103086. [PMID: 38244533 DOI: 10.1016/j.cis.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Cunningham MF, Jessop PG. CO 2-Switchable colloids. Chem Commun (Camb) 2023; 59:13272-13288. [PMID: 37872815 DOI: 10.1039/d3cc03929c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development and design of CO2-switchable colloidal particles is described. A presentation of the principles of CO2 switching, especially as they apply to colloids, is followed by recent progress in the preparation of several types of colloidal particles (polymer nanoparticles, metal-organic frameworks (MOFs), quantum dots, graphene, cellulose nanocrystals, carbon nanotubes) for various applications (Pickering stabilizers, catalysts, latexes), and our perspective on future opportunities.
Collapse
Affiliation(s)
- Michael F Cunningham
- Queen's University, Department of Chemical Engineering, 19 Division Street, Kingston, ON, Canada.
| | - Philip G Jessop
- Queen's University, Department of Chemistry, 90 Bader Lane, Kingston, ON, Canada
| |
Collapse
|
8
|
Wang BJ, Xu ZY, Sun Z, Li ZQ, Luo YH, Luo HQ, Li NB. A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal-organic framework composites for the detection of bisulfite/sulfite in sugar. Anal Bioanal Chem 2023:10.1007/s00216-023-04763-y. [PMID: 37268746 DOI: 10.1007/s00216-023-04763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Bisulfite (HSO3-) and sulfite (SO32-) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO3-/SO32- is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed. The fluorescence signal and the second-order scattering signal of CDs@ZIF-90 are employed to ratiometricly detect HSO3-/SO32-. This proposed strategy exhibits a broad linear range for HSO3-/SO32- determination (10 µM to 8.5 mM) with a limit of detection of 2.74 μM. This strategy is successfully applied for evaluating HSO3-/SO32- in sugar with satisfactory recoveries. Therefore, this work has uniquely combined the fluorescence and second-order scattering signals to establish a novel sensing system with a wide linear range, which is applicable for ratiometric sensing of HSO3-/SO32- in actual samples.
Collapse
Affiliation(s)
- Bing Jie Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Qing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Yuan Hao Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
9
|
Lu W, Dong J, Zhang D, Lei P, Chi Y, Hu C. Redox-switchable Pickering emulsion stabilized by hexaniobate-based ionic liquid for oxidation catalysis. Dalton Trans 2023; 52:6677-6684. [PMID: 37128742 DOI: 10.1039/d3dt00973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pickering emulsions provide an efficient platform for interfacial catalysis, but product separation and catalyst recycling rely on time- and energy-consuming centrifugation or filtration. Herein, three hexaniobate-based ionic liquids, [CnMIM]Nb6 (n = 12, 14 and 16), have been successfully synthesized by self-assembly of hexaniobate (Nb6) with long alkyl chain-modified imidazole cations (CnMIM). Interestingly, the surface wettability of [C16MIM]Nb6 can be regulated by redox reactions, and the rapid switch between emulsification and demulsification can be achieved by alternately adding oxidant (H2O2) and reductant (Na2SO3) agents. Furthermore, studies suggest that the redox-responsive behavior is related to the reversible transformation between [C16MIM]Nb6 and peroxohexaniobate [C16MIM]Nb6-O2, which leads to the rearrangement of hydrophobic long chains on imidazole cations around hydrophilic Nb6. Moreover, [C16MIM]Nb6 can effectively catalyze oxidative desulfurization (conversion > 99%), and the separation of clean model oil and the recycling of the interfacial catalyst were realized in a facile route.
Collapse
Affiliation(s)
- Wei Lu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Jing Dong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Peng Lei
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
10
|
Li S, Li S, Zhang K. Protocol for preparation and characterization of CO 2-responsive foaming. STAR Protoc 2023; 4:102009. [PMID: 36633952 PMCID: PMC9852665 DOI: 10.1016/j.xpro.2022.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Despite the unique switching characteristics of CO2-responsive foaming, its stability remains questionable. In this protocol, we describe steps to synthesize a stable CO2-responsive foam by adding the preferably selected hydrophilic nanoparticle N20 into the surfactant C12A. We detail the selection of the most suitable nanoparticles for the surfactant by measuring the foaming volume and half-life of the dispersion. The protocol can be extended to manufacture with other types of responsive foams (e.g., light responsive foams, magnetic responsive foams). For complete details on the use and execution of this protocol, please refer to Li et al. (2022).1.
Collapse
Affiliation(s)
- Songyan Li
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P. R. China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Shaopeng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Kaiqiang Zhang
- Institute of Energy, Peking University, Beijing 100871, P. R. China; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Pei X, Liu J, Song W, Xu D, Wang Z, Xie Y. CO 2-Switchable Hierarchically Porous Zirconium-Based MOF-Stabilized Pickering Emulsions for Recyclable Efficient Interfacial Catalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1675. [PMID: 36837307 PMCID: PMC9960431 DOI: 10.3390/ma16041675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/08/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive Pickering emulsions are recently being progressively utilized as advanced catalyzed systems for green and sustainable chemical conversion. Hierarchically porous metal-organic frameworks (H-MOFs) are regarded as promising candidates for the fabrication of Pickering emulsions because of the features of tunable porosity, high specific surface area and structure diversity. However, CO2-switchable Pickering emulsions formed by hierarchically porous zirconium-based MOFs have never been seen. In this work, a novel kind of the amine-functionalized hierarchically porous UiO-66-(OH)2 (H-UiO-66-(OH)2) has been developed using a post-synthetic modification of H-UiO-66-(OH)2 by (3-aminopropyl)trimethoxysilane (APTMS), 3-(2-aminoethylamino)propyltrimethoxysilane (AEAPTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEAEAPTMS), and employed as emulsifiers for the construction of Pickering emulsions. It was found that the functionalized H-UiO-66-(OH)2 could stabilize a mixture of toluene and water to give an emulsion even at 0.25 wt % content. Interestingly, the formed Pickering emulsions could be reversibly transformed between demulsification and re-emulsification with alternate addition or removal of CO2. Spectral investigation indicated that the mechanism of the switching is attributed to the reaction of CO2 with amino silane on the MOF and the generation of hydrophilic salts, leading to a reduction in MOF wettability. Based on this strategy, a highly efficient and controlled Knoevenagel condensation reaction has been gained by using the emulsion as a mini-reactor and the emulsifier as a catalyst, and the coupling of catalysis reaction, product isolation and MOF recyclability has become accessible for a sustainable chemical process.
Collapse
|
12
|
Yin C, Zhang H, Mao X. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine. Food Chem 2023; 399:133865. [DOI: 10.1016/j.foodchem.2022.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
13
|
Zhang F, Yang Z, Yin T, Shen H, Liang W, Li X, Lin M, Zhang J, Dong Z. Study of Pickering emulsions stabilized by Janus magnetic nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
The switching behavior of CO2/N2 responsive emulsion systems formed by an amine functionalized quaternary ammonium surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Pei X, Tian C, Wang Y, Li Z, Xiong Z, Wang H, Ma X, Cao X, Li Z. CO 2-Driven reversible transfer of amine-functionalized ZIF-90 between organic and aqueous phases. Chem Commun (Camb) 2022; 58:10372-10375. [PMID: 36017728 DOI: 10.1039/d2cc03313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase transfer of metal-organic frameworks is highly desired in many areas, which remains a challenge. Herein, we present for the first time a CO2-driven reversible transfer of amine-functionalized ZIF-90 between organics and water. A mechanistic study showed that the switching is ascribed to the reversible generation of hydrophilic ammonium salts from the reaction of CO2 with the amines on ZIF-90. This unique system has been used for the coupling of trans-esterification reactions, product separation and component recycling for green sustainable processes. This work opens up a new avenue for performing reactions effectively with an easy separation process.
Collapse
Affiliation(s)
- Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Chunyu Tian
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Yanning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Zhenzhen Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Zhiyan Xiong
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| |
Collapse
|
17
|
Jiang X, Pan H, Ruan G, Hu H, Huang Y, Chen Z. Wettability tunable metal organic framework functionalized high internal phase emulsion porous monoliths for fast solid-phase extraction and sensitive analysis of hydrophilic heterocyclic amines. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128565. [PMID: 35359099 DOI: 10.1016/j.jhazmat.2022.128565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Surface wettability greatly influences the adsorptive, catalytic, and diffuse performances of a porous material. To realize the improved adsorption performance to hydrophilic heterocyclic amines (HAs), polymeric high internal phase emulsions (polyHIPEs) that can be tuned from hydrophobic to hydrophilic is synthesized by facilely regulating the amount of metal organic frameworks (MOFs). The water contact angle of the MOFs and polyHIPEs hybrids (MOFs@polyHIPEs) decreases from 133° to 0° as the amount of amide-modified MOFs increases from 0% to 10%. The hydrophilization of divinybenzene (DVB) based polyHIPEs by MOFs hybridization significantly enhances their adsorption performance and enables them to be suitable for the solid phase extraction (SPE) of hydrophilic HAs. Under the optimized conditions, the MOFs@polyHIPEs achieve adsorption capacities ranging from 42.89 to 86.71 µg/g for HAs through the π-π interaction and hydrogen bonding. The adsorption follows the pseudo-second-order kinetic model, and the nitrogen atoms in/on the imidazole ring are identified as the active adsorption sites for hydrogen bonding. This SPE method, along with HPLC-MS detection, provides detection limits of HAs as low as 0.00020-0.00040 ng/mL. This work offers a feasible strategy in tuning the surface wettability of polyHIPEs without post-modification to achieve high-efficiency enrichment and analysis of HAs.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Hong Pan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| | - Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| | - Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guangxi 541004, China
| |
Collapse
|
18
|
Xi Y, Liu B, Wang S, Wei S, Yin S, Ngai T, Yang X. CO 2-responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis. Chem Sci 2022; 13:2884-2890. [PMID: 35432851 PMCID: PMC8905849 DOI: 10.1039/d1sc06146a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Pickering emulsions are emulsions stabilized by colloidal particles and serve as an excellent platform for biphasic enzymatic catalysis. However, developing simple and green strategies to avoid enzyme denaturation, facilitate product separation, and achieve the recovery of enzyme and colloidal particle stabilizers is still a challenge. This study aimed to report an efficient and sustainable biocatalysis system via a robust CO2/N2-responsive Pickering oil-in-water (o/w) emulsion stabilized solely by pure sodium caseinate (NaCas), which was made naturally in a scalable manner. The NaCas-stabilized emulsion displayed a much higher reaction efficiency compared with conventional CO2/N2-responsive Pickering emulsions stabilized by solid particles with functional groups from polymers or surfactants introduced to tailor responsiveness, reflected by the fact that most enzymes were transferred and enriched at the oil-water interface. More importantly, the demulsification, product separation, and recycling of the NaCas emulsifier as well as the enzyme could be facilely achieved by alternatively bubbling CO2/N2 more than 30 times. Moreover, the recycled enzyme still maintained its catalytic activity, with a conversion yield of more than 90% after each cycle, which was not found in any of the previously reported CO2-responsive systems. This responsive system worked well for many different types of oils and was the first to report on a protein-based CO2/N2-responsive emulsion, holding great promise for the development of more sustainable, green chemical conversion processes for the food, pharmaceutical, and biomedical industries.
Collapse
Affiliation(s)
- Yongkang Xi
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Bo Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shuxin Wang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shuheng Wei
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Shouwei Yin
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China .,Sino-Singapore International Joint Research Institute Guangzhou 510640 P. R. China.,Research Institute for Food Nutrition and Human Health Guangzhou P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Xiaoquan Yang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
19
|
Wu J, Guan X, Wang C, Ngai T, Lin W. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. J Colloid Interface Sci 2021; 610:994-1004. [PMID: 34865740 DOI: 10.1016/j.jcis.2021.11.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Waterborne polyurethane (WPU) is a common colloidal dispersion that can aggregate in the aqueous phase to form nanoparticles with hydrophobic polyurethane chains as the core and hydrophilic ionic groups as the shell. Considering their structure and pH-responsive functional groups, WPU nanoparticles could be ideal particulate emulsifiers for preparing pH-responsive Pickering high internal phase emulsions (HIPEs). EXPERIMENTS A series of anionic WPU with different content of 2,2-bis(hydroxymethyl)propionic acid (DMPA) side chains were synthesized via a polyaddition reaction. The DMPA content, size, ζ-potential, and interfacial behaviors of WPU were then investigated. Furthermore, the effects of particle concentration, internal phase fraction (ϕ), oil type, and pH values on the Pickering HIPEs' morphology, stability, and rheological behaviors were systematically studied. Finally, we demonstrated the emulsification-demulsification process of WPU-stabilized Pickering HIPEs and discussed its mechanism. FINDINGS Oil-in-water (O/W) Pickering HIPEs with tailored morphology and excellent pH-responsiveness were prepared from anionic WPU nanoparticles. The WPU concentration, ϕ, and oil type had a large impact on the formation and mean droplet size of the WPU-stabilized emulsions. Rheology analysis demonstrated that the strictly limited movement of droplets endowed the WPU-stabilized HIPEs with high stability, shear sensitivity, and excellent thixotropic recovery. By simply changing the aqueous-phase pH value, the WPU-stabilized HIPEs could undergo more than ten emulsification-demulsification cycles, as the physical and interfacial properties of WPU nanoparticles were pH-dependent. The excellent performance of the WPU-stabilized pH-responsive Pickering HIPEs exhibited their potential practical applications, such as for oil transportation and recovery, emulsion polymerization, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Chunhua Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Wei Lin
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
|
21
|
Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin. J Colloid Interface Sci 2021; 601:782-792. [PMID: 34107316 DOI: 10.1016/j.jcis.2021.05.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
The dynamic coexistence of heterostructures is crucial for the synergistic function of molecularly imprinted polymers (MIPs) derived from high internal phase emulsions (HIPEs). In this work, hydrophilic boronate affinity imprinted hydrogel sorbents (H-UIO-66-NH2-IHIPEs) were prepared by biphasic synergistic HIPEs droplet reactors filled with reactive microencapsulation system, and used to capture and separate cis-diol containing luteolin (LTL) from complex extraction samples with high selectivity. As the main solid emulsifier, UiO-66-NH2, prototype zirconium-based metal-organic frameworks (MOFs) greatly improves the mechanical performance of the hydrogel, whilst preventing overuse of surfactants. Space-confined formation of imprinted sites in the external phase is realized in the presence of hydrophilic acrylamide phenylboric acid monomer (H-BA), which endows the specific affinity with pH responsiveness to LTL. In addition, the filled microinclusion compound containing elastic monomer octadecyl methacrylate (SMA) and functional monomer glycidyl methacrylate (GMA) simultaneously added interfacial cross-linking reaction to provide stable pore volume and pore shape. Combined with these excellent properties, H-UIO-66-NH2-IHIPEs showed fast capture kinetics (75 min) and large uptake amount (39.77 mg g-1) at 298 K, and confirmed the existence of a uniform chemisorption monolayer. Moreover, excellent recyclability of 6.24% loss in adsorption amount after five adsorption-desorption cycles was observed. Finally, the LTL content of the purified product (about 97.38%) was higher than that of the crude extract (about 85.0%). This study sheds a new light for the design of novel imprinted hydrogel sorbents combined with binary synergistic components.
Collapse
|