1
|
Dong K, Zhou Q, Gao B. New light-illuminated silk road: emerging silk fibroin-based optical biomedical sensors. Analyst 2024; 149:4322-4342. [PMID: 39073410 DOI: 10.1039/d4an00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biomedical silk protein optics has become the subject of intensive research aimed at solving the challenges associated with traditional medical devices in terms of biocompatibility and performance balance. With its significant potential for biomedical applications in the field of drug storage and wound monitoring, it is dedicated to reducing the perturbation of neighbouring tissues. The transparency and biocompatibility of silk proteins make them ideal materials in the field of optical device fabrication, effectively overcoming the challenges posed by conventional materials. In this paper, we explore in detail the complex aspects of the design, synthesis and application related to biomedical silk protein optical devices and comprehensively analyse the potential use of silk protein-centric microstructures (e.g., micropillars, microneedles, and photonic crystals) in the development of optical devices. This review also offers insights into the challenges of applying silk protein optical devices in healthcare and their future trends, aiming to provide a comprehensive overview of the advances, potential impacts and emerging research directions in the field of biomedical silk protein optical devices.
Collapse
Affiliation(s)
- Kaiyi Dong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Cao Q, Chen W, Zhong Y, Ma X, Wang B. Biomedical Applications of Deformable Hydrogel Microrobots. MICROMACHINES 2023; 14:1824. [PMID: 37893261 PMCID: PMC10609176 DOI: 10.3390/mi14101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023]
Abstract
Hydrogel, a material with outstanding biocompatibility and shape deformation ability, has recently become a hot topic for researchers studying innovative functional materials due to the growth of new biomedicine. Due to their stimulus responsiveness to external environments, hydrogels have progressively evolved into "smart" responsive (such as to pH, light, electricity, magnetism, temperature, and humidity) materials in recent years. The physical and chemical properties of hydrogels have been used to construct hydrogel micro-nano robots which have demonstrated significant promise for biomedical applications. The different responsive deformation mechanisms in hydrogels are initially discussed in this study; after which, a number of preparation techniques and a variety of structural designs are introduced. This study also highlights the most recent developments in hydrogel micro-nano robots' biological applications, such as drug delivery, stem cell treatment, and cargo manipulation. On the basis of the hydrogel micro-nano robots' current state of development, current difficulties and potential future growth paths are identified.
Collapse
Affiliation(s)
- Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenjun Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ying Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| |
Collapse
|
3
|
Lee CKW, Pan Y, Yang R, Kim M, Li MG. Laser-Induced Transfer of Functional Materials. Top Curr Chem (Cham) 2023; 381:18. [PMID: 37212928 DOI: 10.1007/s41061-023-00429-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Patterning is crucial for the large-scale application of functional materials. Laser-induced transfer is an emerging patterning method for additively depositing functional materials to the target acceptor. With the rapid development of laser technologies, this laser printing method emerges as a versatile method to deposit functional materials in either liquid or solid format. The emerging applications such as solar interfacial evaporation, solar cells, light-emitting diodes, sensors, high-output synthesis, and other fields are rising fields benefiting from laser-induced transfer. Following a brief introduction to the principles of laser-induced transfer, this review will comprehensively deliberate this novel additive manufacturing method, including preparing the donor layer and the applications, advantages, and limitations of this technique. Finally, perspectives for handling current and future functional materials using laser-induced transfer will also be discussed. Non-experts in laser technologies can also gain insights into this prevailing laser-induced transfer process, which may inspire their future research.
Collapse
Affiliation(s)
- Connie Kong Wai Lee
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Yexin Pan
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Rongliang Yang
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Minseong Kim
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China.
| |
Collapse
|
4
|
Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels 2023; 9:gels9030195. [PMID: 36975644 PMCID: PMC10048399 DOI: 10.3390/gels9030195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
As an emerging 3D printing technology, 3D bioprinting has shown great potential in tissue engineering and regenerative medicine. Decellularized extracellular matrices (dECM) have recently made significant research strides and have been used to create unique tissue-specific bioink that can mimic biomimetic microenvironments. Combining dECMs with 3D bioprinting may provide a new strategy to prepare biomimetic hydrogels for bioinks and hold the potential to construct tissue analogs in vitro, similar to native tissues. Currently, the dECM has been proven to be one of the fastest growing bioactive printing materials and plays an essential role in cell-based 3D bioprinting. This review introduces the methods of preparing and identifying dECMs and the characteristic requirements of bioink for use in 3D bioprinting. The most recent advances in dECM-derived bioactive printing materials are then thoroughly reviewed by examining their application in the bioprinting of different tissues, such as bone, cartilage, muscle, the heart, the nervous system, and other tissues. Finally, the potential of bioactive printing materials generated from dECM is discussed.
Collapse
Affiliation(s)
- Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (J.W.); (H.W.)
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- Correspondence: (J.W.); (H.W.)
| |
Collapse
|
5
|
Angelova L, Daskalova A, Filipov E, Vila XM, Tomasch J, Avdeev G, Teuschl-Woller AH, Buchvarov I. Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model. Polymers (Basel) 2022; 14:polym14132584. [PMID: 35808630 PMCID: PMC9269134 DOI: 10.3390/polym14132584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Temporary scaffolds that mimic the extracellular matrix’s structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity—the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.
Collapse
Affiliation(s)
- Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
- Correspondence:
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Georgi Avdeev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
6
|
Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. INSECTS 2022; 13:286. [PMID: 35323584 PMCID: PMC8950689 DOI: 10.3390/insects13030286] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Silk fibroin (SF) is a natural protein (biopolymer) extracted from the cocoons of Bombyx mori L. (silkworm). It has many properties of interest in the field of biotechnology, the most important being biodegradability, biocompatibility and robust mechanical strength with high tensile strength. SF is usually dissolved in water-based solvents and can be easily reconstructed into a variety of material formats, including films, mats, hydrogels, and sponges, by various fabrication techniques (spin coating, electrospinning, freeze-drying, and physical or chemical crosslinking). Furthermore, SF is a feasible material used in many biomedical applications, including tissue engineering (3D scaffolds, wounds dressing), cancer therapy (mimicking the tumor microenvironment), controlled drug delivery (SF-based complexes), and bone, eye and skin regeneration. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the main methods used for ecological extraction and processing of SF that make it a green material are discussed. Lastly, technological advances in the use of SF-based materials are addressed, especially in healthcare applications such as tissue engineering and cancer therapeutics.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | | | | |
Collapse
|
7
|
Zhou J, Zhu W, Xie Y, Yu Y, Guo Z, Zhang Q, Liu Y, Deng Y. Rapid Selective Ablation and High-Precision Patterning for Micro-Thermoelectric Devices Using Femtosecond Laser Directing Writing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3066-3075. [PMID: 34985853 DOI: 10.1021/acsami.1c21326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly integrated miniature thermoelectric (TE) devices are desirable for applications of chip thermal management and self-powered energy harvesting. Currently, further performance improvement of micro-TE devices is largely limited by micro-nano-patterned processing, which shows the incompatibility with high-performance TE material fabrication or contradiction between machining accuracy and efficiency. This work presents a useful method to flexibly achieve high-precision array patterning for the micro-TE device through the femtosecond laser direct writing technique. By experimentally examining the material ablation process and numerically analyzing the electron-lattice temperature, the laser energy threshold for different materials is determined to obtain the selective removal between TE materials and metallic electrodes. Furthermore, the evaluation criteria are established between the formation quality of microgroove in the array structure and the laser pulse energy distribution, and the shape-control and property-control pattern processing can be realized through the reasonable control of the laser energy. Consequently, the Bi2Te3-based TE pattern with a competitive leg density (496 pairs/cm2) and a high filling factor (55%) is successfully constructed.
Collapse
Affiliation(s)
- Jie Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Zhu
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yujie Xie
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuedong Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhanpeng Guo
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Qingqing Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yutong Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
| |
Collapse
|