1
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
2
|
Zhao C, Wan T, Yuan W, Zheng Z, Jia X, Shu K, Feng L, Min Y. Re-Stickable Yarn Supercapacitors with Vaper Phase Polymerized Multi-Layered Polypyrrole Electrodes for Smart Garments. Macromol Rapid Commun 2022; 43:e2200347. [PMID: 35686689 DOI: 10.1002/marc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Indexed: 11/09/2022]
Abstract
Yarn supercapacitors have attracted significant attention for wearable energy storage due to their ability to be directly integrated with garments. Conducting polymer polypyrrole (PPy) based yarn supercapacitors show limited cycling stability because of the huge volume changes during the charge-discharge processes. In addition, laundering may cause damage to such yarn supercapacitors. Here, the fabrication of PPy-based re-stickable yarn supercapacitors is reported with good cycling stability by employing vapor phase polymerization (VPP) and water-soluble polyethylene oxide (PEO) film as the adhesive layer. VPP duration and cycle are controlled to achieve multi-layered PPy electrodes. The assembled yarn supercapacitors show a good cycling stability with capacitance retention of 79.1% after 5000 charge-discharge cycles. The energy stored in the yarn supercapacitor is sufficient to power a photodetector. After gluing the yarn supercapacitors onto a PEO film, the devices can be stunk on and peeled off the garment to avoid the mechanical stresses during the washing process. Three yarn supercapacitors connected in parallel on PEO film show negative changes in electrochemical performance after 5 sticking-peeling cycles. This work provides a facile way to fabricate PPy-based re-stickable energy storage devices with high cycling stability for smart garments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tao Wan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenxiong Yuan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Kewei Shu
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Sahoo D, Shakya J, Choudhury S, Roy SS, Devi L, Singh B, Ghosh S, Kaviraj B. High-Performance MnO 2 Nanowire/MoS 2 Nanosheet Composite for a Symmetrical Solid-State Supercapacitor. ACS OMEGA 2022; 7:16895-16905. [PMID: 35647444 PMCID: PMC9134226 DOI: 10.1021/acsomega.1c06852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/28/2022] [Indexed: 05/03/2023]
Abstract
To improve the production rate of MoS2 nanosheets as an excellent supercapacitor (SC) material and enhance the performance of the MoS2-based solid-state SC, a liquid phase exfoliation method is used to prepare MoS2 nanosheets on a large scale. Then, the MnO2 nanowire sample is synthesized by a one-step hydrothermal method to make a composite with the as-synthesized MoS2 nanosheets to achieve a better performance of the solid-state SC. The interaction between the MoS2 nanosheets and MnO2 nanowires produces a synergistic effect, resulting in a decent energy storage performance. For practical applications, all-solid-state SC devices are fabricated with different molar ratios of MoS2 nanosheets and MnO2 nanowires. From the experimental results, it can be seen that the synthesized nanocomposite with a 1:4 M ratio of MoS2 nanosheets and MnO2 nanowires exhibits a high Brunauer-Emmett-Teller surface area (∼118 m2/g), optimum pore size distribution, a specific capacitance value of 212 F/g at 0.8 A/g, an energy density of 29.5 W h/kg, and a power density of 1316 W/kg. Besides, cyclic charging-discharging and retention tests manifest significant cycling stability with 84.1% capacitive retention after completing 5000 rapid charge-discharge cycles. It is believed that this unique, symmetric, lightweight, solid-state SC device may help accomplish a scalable approach toward powering forthcoming portable energy storage applications.
Collapse
Affiliation(s)
- Dhirendra Sahoo
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Shakya
- Department
of Physics, Indian Institute of Science Bangalore 560012, India
| | - Sudipta Choudhury
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Susanta Sinha Roy
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Lalita Devi
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Budhi Singh
- School
of Mechanical Engineering, Sungkyunkwan
University, Suwon 03063, South Korea
| | - Subhasis Ghosh
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bhaskar Kaviraj
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Zhao Z, Li Q, Dong Y, Gong J, Li Z, Zhang J. Washable Patches with Gold Nanowires/Textiles in Wearable Sensors for Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18884-18900. [PMID: 35427121 DOI: 10.1021/acsami.2c01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Textile-based flexible electronic devices have attracted tremendous attention in wearable sensors due to their excellent skin affinity and conformability. However, the washing process of such devices may damage the electronic components. Here, a textile-based piezoresistive sensor with ultrahigh sensitivity was fabricated through the layered integration of gold nanowire (AuNW)-impregnated cotton fabric and silver ink screen-printed nylon fabric electrodes, sealing with Parafilm. The prepared piezoresistive sensing patch exhibits outstanding performance, including high sensitivity (914.970 kPa-1, <100 Pa), a fast response time (load: 38 ms, recovery: 34 ms), and a low detection limit (0.49 Pa). More importantly, it can maintain a stable signal output even after 30 000 s of loading-unloading cycles. Furthermore, this sensing patch can efficiently detect breathing, pulse, heart rate, and joint movements during the activities. After five cycles of mechanical washing, the piezoresistive performance keeps 90.3%, demonstrating the high feasibility of this sensor in practical applications. This sensor has a simple fabrication, with good fatigue resistance and durability due to its all-fabric core element. It provides a strategy to address the machine-washing issues in textile electronics. This washable textile sensor is expected to show significant potential in future applications of health monitoring, human-machine interfaces, and artificial skin.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yu Dong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Kazari H, Pajootan E, Hubert P, Coulombe S. Dry Synthesis of Binder-Free Ruthenium Nitride-Coated Carbon Nanotubes as a Flexible Supercapacitor Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15112-15121. [PMID: 35347978 DOI: 10.1021/acsami.1c22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ruthenium nitride was successfully deposited on a multiwalled carbon nanotube (MWCNT) forest grown on a stainless-steel mesh substrate by radiofrequency plasma-assisted pulsed laser deposition. This novel dry fabrication method for flexible supercapacitor electrodes eliminates toxic byproducts and the need for any binder component. Experimental results show a successful thin film coating of the individual MWCNTs with RuNx under various synthesis conditions. The electrochemical characterization demonstrates a significant improvement in capacitance of the synthesized RuNx-MWCNT electrode compared to the bare MWCNT forest, with a large potential window of 1.2 V. Capacitance values as high as 818.2 F g-1 (37.9 mF cm-2) have been achieved.
Collapse
Affiliation(s)
- Hanie Kazari
- Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K7, Canada
| | - Elmira Pajootan
- Catalytic and Plasma Process Engineering, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Pascal Hubert
- Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K7, Canada
| | - Sylvain Coulombe
- Catalytic and Plasma Process Engineering, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
6
|
Xiao G, Ju J, Lu H, Shi X, Wang X, Wang W, Xia Q, Zhou G, Sun W, Li CM, Qiao Y, Lu Z. A Weavable and Scalable Cotton-Yarn-Based Battery Activated by Human Sweat for Textile Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103822. [PMID: 34989163 PMCID: PMC8895049 DOI: 10.1002/advs.202103822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Indexed: 06/12/2023]
Abstract
Sweat-activated batteries (SABs) are lightweight, biocompatible energy generators that produce sufficient power for skin-interface electronic devices. However, the fabrication of 1D SABs that are compatible with conventional textile techniques for self-powered wearable electronics remains challenging. In this study, a cotton-yarn-based SAB (CYSAB) with a segmental structure is developed, in which carbon-black-modified, pristine yarn and Zn foil-wrapped segments are prepared to serve as the cathode, salt bridge, and anode, respectively. Upon electrolyte absorption, the CYSAB can be rapidly activated. Its performance is closely related to the ion concentration, infiltrated electrolyte volume, and evaporation rate. The CYSAB can tolerate repeated bending and washing without any significant influence on its power output. Moreover, the CYSABs can be woven into fabrics and connected in series and parallel configurations to produce an energy supplying headband, which can be activated by the sweat secreted from a volunteer during a cycling exercise to power light-emitting diode headlights. The developed CYSAB can also be integrated with yarn-based strain sensors to achieve a smart textile for the self-powered sensing of human motion and breathing. This weavable, washable, and scalable CYSAB is expected to contribute to the manufacturing of self-powered smart textiles for future applications in wearable healthcare monitoring.
Collapse
Affiliation(s)
- Gang Xiao
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| | - Jun Ju
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| | - Hao Lu
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| | - Xuemei Shi
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| | - Xin Wang
- College of Food ScienceSouthwest UniversityChongqing400715P. R. China
| | - Wei Wang
- Singapore Institute of Manufacturing TechnologySingapore138669Singapore
| | - Qingyou Xia
- Biological Science Research CenterAcademy for Advanced Interdisciplinary StudiesSouthwest UniversityChongqing400715P. R. China
| | - Guangdong Zhou
- College of Artificial IntelligenceChongqing Key Laboratory of Brain‐inspired Computing & Intelligent ControlSouthwest UniversityChongqing400715P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan ProvinceCollege of Chemistry and Chemical EngineeringHainan Normal UniversityHaikou571158P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
- School of Materials Science and EngineeringSuzhou University of Science and TechnologySuzhou215011P. R. China
| | - Yan Qiao
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced MaterialsSchool of Materials & EnergySouthwest UniversityChongqing400715P. R. China
| |
Collapse
|