1
|
Ezazi M, Quazi MM, Taheri H. Recent Studies of Membranes for Liquids Separation and Water Treatment. MEMBRANES 2023; 13:779. [PMID: 37755201 PMCID: PMC10537629 DOI: 10.3390/membranes13090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Rapid urbanization and industrialization in the past decades have resulted in vast amounts of wastewater containing pollutants such as inorganic chemicals, pathogens, pharmaceuticals, plant nutrients, petrochemical products, and microplastics [...].
Collapse
Affiliation(s)
- Mohammadamin Ezazi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA
| | - M. M. Quazi
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia;
| | - Hossein Taheri
- Department of Manufacturing Engineering, Georgia Southern University, Statesboro, GA 30460, USA;
| |
Collapse
|
2
|
Ezazi M, Quazi MM. Recent Developments in Two-Dimensional Materials-Based Membranes for Oil-Water Separation. MEMBRANES 2023; 13:677. [PMID: 37505043 PMCID: PMC10386624 DOI: 10.3390/membranes13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns due to their potential to pose irreversible threats to the ecosystems. Therefore, the effective treating of these large volumes of oily wastewater is an inevitable challenge to address. Separating oil-water mixtures by membranes has been an attractive technology due to the high oil removal efficiency and low energy consumption. However, conventional oil-water separation membranes may not meet the complex requirements for the sustainable treatment of wastewater due to their relatively shorter life cycle, lower chemical and thermal stability, and permeability/selectivity trade-off. Recent advancements in two-dimensional (2D) materials have provided opportunities to address these challenges. In this article, we provide a brief review of the most recent advancements in oil-water separation membranes modified with 2D materials, with a focus on MXenes, graphenes, metal-organic frameworks, and covalent organic frameworks. The review briefly covers the backgrounds, concepts, fabrication methods, and the most recent representative studies. Finally, the review concludes by describing the challenges and future research directions.
Collapse
Affiliation(s)
- Mohammadamin Ezazi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA
| | - M M Quazi
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia
| |
Collapse
|
3
|
Myeong J, Deshmukh P, Gyu Shin W. Facile preparation of superhydrophilic and underwater superoleophobic stainless steel mesh for oil-water separation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Zhou W, Hu X, Zhan B, Li S, Chen Z, Liu Y. Green and rapid fabrication of superhydrophilic and underwater superoleophobic coatings for super anti-crude oil fouling and crude oil-water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Deng B, Li B, Du B, Zhou S, Luo R, Li H. Research on preparation and properties of pH responsive superhydrophobic coating modified by SEBS. AIP ADVANCES 2022; 12:075022. [DOI: 10.1063/5.0095056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 09/01/2023]
Abstract
Smart materials with reversible wettability have attracted a lot of attention for application in sewage treatment. In this work, a pH-responsive polymer was prepared via the one-step free radical polymerization of 3-(trimethoxysilyl) acrylate and 2-dimethylaminoethyl methacrylate. The obtained pH-responsive polymer was then coated with a hydrogenated styrene–ethylene–butadiene–styrene block copolymer to endow the material with pH-responsive switchable superhydrophilic and superhydrophobic properties. Due to the excellent self-cleaning and mechanical stability of the coating, it was used to modify paper, which was then successfully utilized in the treatment of oily wastewater, showing great potential for use in advanced applications.
Collapse
Affiliation(s)
- Bin Deng
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| | - Bin Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| | - Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, People's Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, People's Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| | - Rubai Luo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, People's Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| | - Huailin Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, People's Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, People's Republic of China
| |
Collapse
|
6
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Delamination-Free In-Air and Underwater Oil-Repellent Filters for Oil-Water Separation: Gravity-Driven and Cross-Flow Operations. ENERGIES 2021. [DOI: 10.3390/en14217429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Separating oil-water mixtures is critical in a variety of practical applications, including the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum products. Among various methodologies that have been utilized, membranes are the most attractive technology for separating oil-water emulsions. In recent years, selective wettability membranes have attracted particular attention for oil-water separations. The membrane surfaces with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for oil-water separations in comparison with underwater oleophobic membranes. However, developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The coating delamination process is a critical challenge when applying these membranes for separations. Inspired by the above, in this study we utilize poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane (MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for further oil-water separations.
Collapse
|
8
|
Shrestha B, Ezazi M, Rad SV, Kwon G. Predicting kinetics of water-rich permeate flux through photocatalytic mesh under visible light illumination. Sci Rep 2021; 11:21065. [PMID: 34702950 PMCID: PMC8548496 DOI: 10.1038/s41598-021-00607-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-based separation technologies are attractive to remediating unconventional water sources, including brackish, industrial, and municipal wastewater, due to their versatility and relatively high energy efficiency. However, membrane fouling by dissolved or suspended organic substances remains a primary challenge which can result in an irreversible decline of the permeate flux. To overcome this, membranes have been incorporated with photocatalytic materials that can degrade these organic substances deposited on the surface upon light illumination. While such photocatalytic membranes have demonstrated that they can recover their inherent permeability, less information is known about the effect of photocatalysis on the kinetics of the permeate flux. In this work, a photocatalytic mesh that can selectively permeate water while repelling oil was fabricated by coating a mixture of nitrogen-doped TiO2 (N-TiO2) and perfluorosilane-grafted SiO2 (F-SiO2) nanoparticles on a stainless steel mesh. Utilizing the photocatalytic mesh, the time-dependent evolution of the water-rich permeate flux as a result of photocatalytic degradation of the oil was studied under the visible light illumination. A mathematical model was developed that can relate the photocatalytic degradation of the organic substances deposited on a mesh surface to the evolution of the permeate flux. This model was established by integrating the Langmuir-Hinshelwood kinetics for photocatalysis and the Cassie-Baxter wettability analysis on a chemically heterogeneous mesh surface into a permeate flux relation. Consequently, the time-dependent water-rich permeate flux values are compared with those predicted by using the model. It is found that the model can predict the evolution of the water-rich permeate flux with a goodness of fit of 0.92.
Collapse
Affiliation(s)
- Bishwash Shrestha
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Mohammadamin Ezazi
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Seyed Vahid Rad
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
9
|
Ezazi M, Shrestha B, Maharjan A, Kwon G. Water-Responsive Self-Repairing Superomniphobic Surfaces via Regeneration of Hierarchical Topography. ACS MATERIALS AU 2021; 2:55-62. [PMID: 36855698 PMCID: PMC9888626 DOI: 10.1021/acsmaterialsau.1c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superomniphobic surfaces that can self-repair physical damage are desirable for sustainable performance over time in many practical applications that include self-cleaning, corrosion resistance, and protective gears. However, fabricating such self-repairing superomniphobic surfaces has thus far been a challenge because it necessitates the regeneration of both low-surface-energy materials and hierarchical topography. Herein, a water-responsive self-repairing superomniphobic film is reported by utilizing cross-linked hydroxypropyl cellulose (HPC) composited with silica (SiO2) nanoparticles (HPC-SiO2) that is treated with a low-surface-energy perfluorosilane. The film can repair physical damage (e.g., a scratch) in approximately 10 s by regenerating its hierarchical topography and low-surface-energy material upon the application of water vapor. The repaired region shows an almost complete recovery of its inherent superomniphobic wettability and mechanical hardness. The repairing process is driven by the reversible hydrogen bond between the hydroxyl (-OH) groups which can be dissociated upon exposure to water vapor. This results in a viscous flow of the HPC-SiO2 film into the damaged region. A mathematical model composed of viscosity and surface tension of the HPC-SiO2 film can describe the experimentally measured viscous flow with reasonable accuracy. Finally, we demonstrate that the superomniphobic HPC-SiO2 film can repair physical damage by a water droplet pinned on a damaged area or by sequential rolling water droplets.
Collapse
|
10
|
Jiang S, Zhou S, Du B, Luo R. Preparation of the Temperature-Responsive Superhydrophobic Paper with High Stability. ACS OMEGA 2021; 6:16016-16028. [PMID: 34179647 PMCID: PMC8223434 DOI: 10.1021/acsomega.1c01861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a method for preparing a high-stability superhydrophobic paper with temperature-induced wettability transition is proposed. First, a temperature-responsive superhydrophobic triblock polymer PHFMA-PTSPM-PNIPAAm was prepared by one-step polymerization of TSPM, HFMA, and NIPAAm in a mass ratio of 0.3:0.3:0.3, then a superhydrophobic paper with a good temperature response was successfully prepared by grafting amino-modified SiO2 with the polymer to modify the surface of the paper. A further study found that when the mass ratio of amino-modified SiO2 to polymer is 0.2, the coating has good superhydrophobicity and transparency. What is more, the prepared modified paper is in a superhydrophobic state when the temperature is higher than 32 °C, and is in a superhydrophilic state when it is lower than 32 °C, which can realize free conversion between superhydrophobic and superhydrophilic states. In addition, the superhydrophobic paper prepared by this method not only has high oil-water separation efficiency, and the superhydrophobic coating shows good stability and transparency, but also has low requirements of environmental conditions for preparation, relatively simple preparation process, and strong repeatability, and it has a very broad application prospect.
Collapse
|
11
|
Li Z, Zhang TC, Mokoba T, Yuan S. Superwetting Bi 2MoO 6/Cu 3(PO 4) 2 Nanosheet-Coated Copper Mesh with Superior Anti-Oil-Fouling and Photo-Fenton-like Catalytic Properties for Effective Oil-in-Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23662-23674. [PMID: 33985327 DOI: 10.1021/acsami.1c02814] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superwetting materials with excellent anti-oil-fouling performance for the treatment of oily wastewater are urgently demanded in practice. In this work, aiming at effectively separating diverse oil-in-water emulsions, a multifunctional Bi2MoO6/Cu3(PO4)2 nanosheet-coated copper mesh was successfully fabricated by the combination of chemical oxidation and ultrasonic irradiation deposition methods. The resultant copper mesh exhibited superior superhydrophilicity/underwater superoleophobicity and, more importantly, preferable anti-oil-fouling property benefitting from the stable and firm hydration layer. A series of oil/water separation experiments for the highly emulsified surfactant-free and surfactant-stabilized oil-in-water emulsions were conducted, with the respective permeation fluxes of up to 3000 and 700 L·m-2·h-1 and the corresponding separation efficiencies of 99.5 and 98.6% solely driven by gravity. Meanwhile, considering the photo-Fenton-like catalytic activity of Bi2MoO6, the as-fabricated copper mesh exhibited excellent degradation ability toward organic pollutants under visible light irradiation. More importantly, stability tests were performed to evaluate the ability to cope with the harsh environments for practical applications. With the outstanding performances of high separation efficiency, desirable photo-Fenton-like catalytic capacity, and strong stability, the Bi2MoO6/Cu3(PO4)2 nanosheet-coated copper mesh holds promising potential for purifying emulsified wastewater.
Collapse
Affiliation(s)
- Zhikai Li
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Thabang Mokoba
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Shrestha B, Ezazi M, Kwon G. Engineered Nanoparticles with Decoupled Photocatalysis and Wettability for Membrane-Based Desalination and Separation of Oil-Saline Water Mixtures. NANOMATERIALS 2021; 11:nano11061397. [PMID: 34070494 PMCID: PMC8227411 DOI: 10.3390/nano11061397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane-based separation technologies are the cornerstone of remediating unconventional water sources, including brackish and industrial or municipal wastewater, as they are relatively energy-efficient and versatile. However, membrane fouling by dissolved and suspended substances in the feed stream remains a primary challenge that currently prevents these membranes from being used in real practices. Thus, we directly address this challenge by applying a superhydrophilic and oleophobic coating to a commercial membrane surface which can be utilized to separate and desalinate an oil and saline water mixture, in addition to photocatalytically degrading the organic substances. We fabricated the photocatalytic membrane by coating a commercial membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The membrane was placed under a UV light, which resulted in a chemically heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, respectively) that were securely bound to the commercial membrane surface. We demonstrated that the coated membrane could be utilized for continuous separation and desalination of an oil–saline water mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on the membrane surface upon visible light irradiation.
Collapse
|
13
|
Baggio A, Doan HN, Vo PP, Kinashi K, Sakai W, Tsutsumi N, Fuse Y, Sangermano M. Chitosan-Functionalized Recycled Polyethylene Terephthalate Nanofibrous Membrane for Sustainable On-Demand Oil-Water Separation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000107. [PMID: 33854791 PMCID: PMC8025399 DOI: 10.1002/gch2.202000107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/07/2020] [Indexed: 05/14/2023]
Abstract
The preservation of marine ecosystems is one of the most severe challenges at present. In particular, oil-water separation from oil spills and oily wastewater is important. For this reason, a low-cost, effective, and sustainable polymeric solution is in high demand. In this work, a controlled-wettability membrane for selective separation of oil-water mixtures and emulsions is developed. The nanofibrous membrane is prepared via a facile and cost-effective electrospinning technique using environmentally sustainable materials, such as recycled polyethylene terephthalate and chitosan. The effect of different concentrations of chitosan on the morphology, chemical composition, mechanical properties, wettability, and separation performance of the membrane is evaluated. The membranes exhibited underoil superhydrophobic and underwater superoleophobic behavior, which is essential to perform the selective separation. In fact, the designed filter has competitive antifouling properties (oil intrusion pressure > 45 kPa) and showed high heavy- and light-oil/water separation efficiencies (>95%) both for emulsions and immiscible mixtures.
Collapse
Affiliation(s)
- Andrea Baggio
- Master's Program of Innovative MaterialsKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
- Master's Program of Materials EngineeringPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| | - Hoan N. Doan
- Doctor's Program of Materials ChemistryKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Phu P. Vo
- Doctor's Program of Materials ChemistryKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Kenji Kinashi
- Faculty of Materials Science and EngineeringKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Wataru Sakai
- Faculty of Materials Science and EngineeringKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Naoto Tsutsumi
- Faculty of Materials Science and EngineeringKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Yasuro Fuse
- Center of Environmental ScienceKyoto Institute of TechnologyMatsugasaki, SakyoKyoto606‐8585Japan
| | - Marco Sangermano
- Department of Applied Science and Technology (DISAT)Politecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| |
Collapse
|
14
|
Deng B, Li W, Du B, Luo R, Zhou S. Superwetting interfaces for oil/water separation. AIP ADVANCES 2021; 11. [DOI: 10.1063/5.0031090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Superhydrophobic coatings have been applied in various fields. The materials used in the preparation of superhydrophobic coatings have attracted the attention of scholars. Due to the harm of fluorine-containing substances with low surface energy to the environment, fluorine-free superhydrophobic coatings have become a hotspot in the research field. Herein, a fluorine-free superhydrophobic coating with oil/water separation was made by a solution immersion way. The fluorine-free copolymer and polydimethylsiloxane (PDMS)/SiO2 nanoparticles (NPs) were mixed to prepare a composite solution, and the superhydrophobic surface was obtained on the paper by a dipping method. The scanning electron microscope, x-ray photoelectron spectrometer, 1H nuclear magnetic resonance, and Fourier transform infrared were used to study the surface characteristics and structural composition of the superhydrophobic material. The research proved that the copolymer and PDMS/SiO2 NPs were successfully coated on the paper surface, and the rough structure of the superhydrophobic surface was also attributed to the introduction of the copolymer and PDMS/SiO2 NPs. The evaluation of the coating has proved its excellent hydrophobicity, oil/water separation performance, and self-cleaning performance. The coating is a sustainable and environmentally friendly superhydrophobic material that can be used in packaging, construction, petrochemical, and other industries.
Collapse
Affiliation(s)
- Bin Deng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 1 , Xi’an 710048, People’s Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology 2 , Xi’an 710048, People’s Republic of China
| | - Wanrong Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 1 , Xi’an 710048, People’s Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology 2 , Xi’an 710048, People’s Republic of China
| | - Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 1 , Xi’an 710048, People’s Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology 2 , Xi’an 710048, People’s Republic of China
| | - Rubai Luo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 1 , Xi’an 710048, People’s Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology 2 , Xi’an 710048, People’s Republic of China
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 1 , Xi’an 710048, People’s Republic of China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology 2 , Xi’an 710048, People’s Republic of China
| |
Collapse
|