1
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Gong P, Yuan S, Yu Z, Xiao T, Li H, Ma S, Bao W, Xu Z, Zhou P, Zhang DW, Li Q, Sun Z. Long-Range Epitaxial MOF Electronics for Continuous Monitoring of Human Breath Ammonia. J Am Chem Soc 2024; 146:4036-4044. [PMID: 38291728 DOI: 10.1021/jacs.3c12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
As an important biomarker, ammonia exhibits a strong correlation with protein metabolism and specific organ dysfunction. Limited by the immobile instrumental structure, invasive and complicated procedures, and unsatisfactory online sensitivity and selectivity, current medical diagnosis fails to monitor this chemical in real time efficiently. Herein, we present the successful synthesis of a long-range epitaxial metal-organic framework on a millimeter domain-sized single-crystalline graphene substrate (LR-epi-MOF). With a perfect 30° epitaxial angle and a mere 2.8% coincidence site lattice mismatch between the MOF and graphene, this long-range-ordered epitaxial structure boosts the charge transfer from ammonia to the MOF and then to graphene, thereby promoting the overall charge delocalization and exhibiting extraordinary electrical global coupling properties. This unique characteristic imparts a remarkable sensitivity of 0.1 ppb toward ammonia. The sub-ppb detecting capability and high anti-interference ability enable continuous information recording of breath ammonia that is strongly correlated with the intriguing human lifestyle. Wearable electronics based on the LR-epi-MOF could accurately portray the active protein metabolism pattern in real time and provide personal assistance in health management.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Sailin Yuan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ziyan Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Taishi Xiao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongbin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shunli Ma
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Wenzhong Bao
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Zihan Xu
- Shenzhen Six Carbon Technology, Shenzhen 518055, P. R. China
| | - Peng Zhou
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - David Wei Zhang
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzong Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
3
|
Verma M, Bahuguna G, Singh S, Kumari A, Ghosh D, Haick H, Gupta R. Porous SnO 2 nanosheets for room temperature ammonia sensing in extreme humidity. MATERIALS HORIZONS 2024; 11:184-195. [PMID: 37937438 DOI: 10.1039/d3mh01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Gas sensors based on tin dioxide (SnO2) for the detection of ammonia (NH3) have become commercially available for environmental monitoring due to their reactive qualities when exposed to different gaseous pollutants. Nevertheless, their implementation in the medical field has been hindered by certain inherent drawbacks, such as needing to operate at high temperatures, lack of selectivity, unreliable operation under high-humidity conditions, and a lower detection limit. To counter these issues, this study created 2D nanosheets of SnO2 through an optimized solvothermal method. It was found that tuning the precursor solution's pH to either neutral or 14 led to aggregated or distributed, uniform-size nanosheets with a higher crystallinity, respectively. Remarkably, the SnO2 nanosheet sensor (SNS-14) displayed a much lower response to water molecules and specific reactivity to ammonia even when subjected to reducing and oxidizing agents at 25 °C due to the micropores and chemisorbed oxygen on the nanosheets. Furthermore, the SNS-14 was seen to have the highest sensitivity to ammonia at 100 ppm, with rapid response (8 s) and recovery times (55 s) even at a high relative humidity of 70%. Its theoretical detection limit was recorded to be 64 ppt, better than any of the earlier SnO2-based chemiresistive sensors. Its exceptional sensing abilities were credited to its optimal crystallinity, specific surface area, defects, chemisorbed oxygen, and porous structure. NH3-TPD measurements and computational simulations were employed to understand the ammonia interaction with atomistic details on the SnO2 nanosheet surface. A real time breath sensing experiment was simulated to test the efficacy of the sensor. Reaching this advancement is an achievement in bypassing past boundaries of SnO2-centered sensors, making it feasible to detect ammonia with enhanced precision, discrimination, dependability, and velocity for probable usages in medical diagnostics and ecological surveillance.
Collapse
Affiliation(s)
- Mohit Verma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342037, India
| | - Gaurav Bahuguna
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342037, India
| | - Sukhwinder Singh
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342037, India
| | - Ankita Kumari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342037, India
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
4
|
Thongam DD, Chaturvedi H. Heterostructure charge transfer dynamics on self-assembled ZnO on electronically different single-walled carbon nanotubes. CHEMOSPHERE 2023; 323:138239. [PMID: 36841447 DOI: 10.1016/j.chemosphere.2023.138239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The charge transfer kinetics of the catalyst particles play a key role in advanced oxidation processes (AOP) for the complete destruction of recalcitrant and persistent contaminants in water. Here, a significant improvement in the photocatalytic performance is observed in the Single-Walled Carbon Nanotube (SWCNT)-ZnO heterostructure photocatalyst. The charge transfer dynamics and factors affecting AOP are studied using ZnO nanoparticles self-assembled onto three electronically different SWCNTs (metallic, semiconducting, and pristine) via the precipitation method, introducing a heterojunction interface. The creation of the SWCNT/ZnO heterostructure interface improves charge transfer and separation, resulting in a charge carrier lifetime of 7.37 ns. Also, surface area, pore size, and pore volumes are increased by 4.2 times compared to those of ZnO. The nanoparticles-coated face-mask fabric used as the floating photocatalyst exhibited high stability and recyclability with 99% RhB degradation efficiency under natural sunlight and 94% under UV light after the 5th cycle. The surface and crystal defects-oxygen or zinc defects/interstitials open new reaction active sites that assist in charge carrier transfer and act as pollutant absorption and interaction sites for enhanced performance. The ideal band edge positions of the valence band and conduction band favor the generation of H2O/OH•, OH·/OH, and O2/HO2• reactive oxygen species. OH• radicals are found to play a vital role in this AOP by using ethanol as an OH• scavenger.
Collapse
Affiliation(s)
- Debika Devi Thongam
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Harsh Chaturvedi
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Radhakrishnan RP, Prasad AK. Spectroscopic determination of the role of vanadyl oxygen in room temperature NH 3 sensing by V 2O 5 nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122092. [PMID: 36403540 DOI: 10.1016/j.saa.2022.122092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
In the present study, a multi-modal approach consisting of in-situ photoluminescence, Raman, and UV-Vis absorption spectroscopic studies is carried out along with chemiresistive sensing to unveil the mechanism of NH3 gas sensing by V2O5 nanoparticles in ambient air. V2O5 nanoparticles with an average size of 49 nm show a superior sensor response of 17 ± 1.5 % towards 1 ppm of NH3 gas with a response and recovery time of 96 s and 45 s, respectively. The photoluminescence and UV-Vis absorption studies in the presence of NH3 reveal electron doping to a new energy level at 1.84 eV, resulting in conduction band filling and increase in the optical band gap. The intensity of the photoluminescence spectrum shows an increase in the presence of NH3 gas as a result of this electron doping. The sensor response from the optical sensing carried out by in-situ photoluminescence study is 43 % for 40 ppm of NH3 gas. The vanadyl oxygen site is the most active in the sensing process, as evident by a selective enhancement in the intensity of V-O (vanadyl) bond vibration. This study gives an experimental evidence for the changes in optical and electronic properties of V2O5 on the adsorption of NH3 gas molecules.
Collapse
Affiliation(s)
- Reshma P Radhakrishnan
- Nanomaterials Characterization and Sensors Section, Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India.
| | - Arun K Prasad
- Nanomaterials Characterization and Sensors Section, Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India.
| |
Collapse
|
6
|
Kaewsuwan D, Wongpinij T, Euaruksakul C, Chanlek N, Triamnak N, Lertvanithphol T, Horprathum M, Kaewkhao J, Manyum P, Yimnirun R, Rujirawat S. Photoluminescence of tin dioxide (SnO2) nanostructure grown on Si(001) by thermal evaporation technique. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Liu Q, Zhan H, Huang X, Song Y, He S, Li X, Wang C, Xie Z. High Visible Light Photocatalytic Activity of SnO
2‐x
Nanocrystals with Rich Oxygen Vacancy. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan Liu
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Hongquan Zhan
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Xuchun Huang
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Yihui Song
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Shenchao He
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Xiaohong Li
- School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333001 P.R. China
| | - Changan Wang
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P.R. China
| | - Zhipeng Xie
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P.R. China
| |
Collapse
|
8
|
Sahu BK, Juine RN, Sahoo M, Kumar R, Das A. Interface of GO with SnO 2 quantum dots as an efficient visible-light photocatalyst. CHEMOSPHERE 2021; 276:130142. [PMID: 33744649 DOI: 10.1016/j.chemosphere.2021.130142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) with beneficial functional groups regulates the surface chemistry for catalytic applications. However, the low electrical conductivity of GO invokes further treatments that compromise the above-valued properties. We report an interfacial engineering of GO decorated with SnO2 quantum dots (QDs) for the visible-light-driven catalysis of dye degradation. Retention of beneficial functional features of GO and QDs in the GO-SnO2 composite is established by using TEM, FTIR, and Raman spectroscopy techniques. Further, investigations with EXAFS and lifetime-measurements provide the local structure and defects distributions in QDs which are correlated with the improved conductivity. PL and electrochemical impedance spectroscopic measurements help unraveling the charge-transfer across the interface of the GO-SnO2 composite. The unique ability of ∼94% degradation of MB using only 0.5 mg of GO-SnO2 catalyst within half an hour under the visible light is demonstrated for the first time with insights on the photocatalytic mechanism.
Collapse
Affiliation(s)
- Binaya Kumar Sahu
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India.
| | - Rabindra Nath Juine
- Health Physics Unit, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities, HBNI, Kalpakkam, 603102, India
| | - Madhusmita Sahoo
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A Das
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India.
| |
Collapse
|