1
|
Liu J, Liu C, Qiu X, Zhang T, Gao S, Song X, Chen F. CeF 3-Accelerated surface reconstruction of MoO 2 nanosheets into coral-like CeF 3/MoO 2 composites enhances the oxygen evolution reaction for efficient water splitting. J Colloid Interface Sci 2025; 683:1057-1066. [PMID: 39764989 DOI: 10.1016/j.jcis.2024.12.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF3/MoO2 heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF3/MoO2 heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities. The prepared coral-like CeF3/MoO2/CSF catalyst achieves overpotentials as low as 29 mV and 210 mV for hydrogen evolution reaction and oxygen evolution reaction at 10 mA cm-2 current density, respectively. Notably, the CeF3/MoO2@CSF||CeF3/MoO2@CSF electrolyzer demonstrates a superior overall water splitting ability having a voltage of 1.53 V at 10 mA cm-2 and retains outstanding stability for 100 h operating in 1.0 M KOH electrolyte. The exceptional catalytic performance of CeF3/MoO2@CSF is attributed to the reduction in the water dissociation energy barrier, optimal adsorption/desorption behavior of H/O intermediates, and rapid mass transfer facilitated by the multistage porous channels. These findings, supported by experimental results and density functional theory (DFT) calculations, provide a novel approach for designing rare-earth metal heterojunctions and biomass-derived synergistic electrocatalysts for efficient water splitting.
Collapse
Affiliation(s)
- Jia Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China
| | - Chenglin Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianglin Qiu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianshuo Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanshan Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoming Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fushan Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
2
|
Deng K, Liu X, Liu P, Lv X, Tian W, Ji J. Enhanced Adsorption Kinetics and Capacity of a Stable CeF 3@Ni 3N Heterostructure for Methanol Electro-Reforming Coupled with Hydrogen Production. Angew Chem Int Ed Engl 2025; 64:e202416763. [PMID: 39523460 DOI: 10.1002/anie.202416763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Alkaline methanol-water electrolysis system is regarded as an appealing strategy for electro-reforming methanol into formate and producing hydrogen with low energy-consumption compared with alkaline water electrolysis. However, stability and selectivity under high current densities for practical application remain challenging. Herein, a CeF3@Ni3N nanosheets array anchored on carbon cloth (CeF3@Ni3N/CC) was fabricated. The gradual extrusion of F species from Ni(OH)2 lattices can stabilize hierarchical structure and construct abundant heterostructure interfaces. Moreover, CeF3 can modulate electron distribution of Ni3N, thus simultaneously enhancing the surface adsorption kinetics and capability of methanol and OH-, which is conducive to enhanced methanol oxidation reaction (MOR) activity and selectivity. Therefore, bifunctional CeF3@Ni3N/CC exhibits low potential of 1.43 V at 500 mA cm-2, along with high stability over 72 h and high faradaic efficiency (FEs) in MOR, as well as an overpotential of 76 mV to achieve 50 mA cm-2 for hydrogen evolution reaction (HER). Furthermore, membrane-free CeF3@Ni3N/CC||CeF3@Ni3N/CC cell for MOR||HER delivers high electrocatalytic activity, long-term stability and FEs at high current density of 300 mA cm-2. This study highlights the importance of optimizing surface adsorption behavior of active species, as well as rational design of highly efficient heterostructure electrocatalysts for methanol upgrading coupled with hydrogen production.
Collapse
Affiliation(s)
- Kuan Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Tian
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Kaur R, Gaur A, Pundir V, Arun K, Bagchi V. Unleashing unprecedented activation of high-valent Ni and Fe charge dynamics in CeF 3-NiFe layered double hydroxide heterostructure: Demonstrating oxygen evolution reaction at an extremely high current density. J Colloid Interface Sci 2024; 672:736-743. [PMID: 38870764 DOI: 10.1016/j.jcis.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The efficacy of any electrochemical reaction hinges on the extent of interaction achievable between reactive intermediates and the electrocatalytic active site. Any weak adsorption of these intermediates on the metal's active site results in low oxygen evolution reaction (OER) rates, mainly when catalysed by the Ni-based layered double hydroxide. To tackle this challenge, a heterojunction consisting of nickel-iron layered double hydroxide (NiFe-LDH) and cerium trifluoride (CeF3) is synthesized. Both phases were developed in-situ to have an abundance of heterointerfaces. The charge transfer amid the NiFe-LDH and CeF3 phases is brought about via these heterointerfaces. As a result, the overall charge dynamics associated with nickel (Ni) and iron (Fe) atoms are somewhat increased, and an enhanced positive charge on the metal site makes it more active in grabbing the reactive species, thereby making the entire OER process faster. The CeF3-NiFeLDH catalyst reaches a current density of 1000 mA cm-2 at an overpotential of 340 mV. Such a high current density is highly significant for the industrial-scale production of the products. The catalyst demonstrated impressive durability, maintaining stable performance for 90 h while operating at 500 mA cm-2. The charge dynamics between both phases were thoroughly examined using X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Rajdeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Ashish Gaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vikas Pundir
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - K Arun
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
4
|
Mao Y, Yang X, Dong K, Sheng T, Yuan Q. Fe,Co co-implanted dendritic CeO 2/CeF 3 heterostructure@MXene nanocomposites as structurally stable electrocatalysts with ultralow overpotential for the alkaline oxygen evolution reaction. J Colloid Interface Sci 2024; 662:208-217. [PMID: 38350344 DOI: 10.1016/j.jcis.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Exploring low-cost, high-activity, and structurally stable nonprecious metal electrocatalysts for sluggish oxygen evolution reaction (OER) is paramount for water electrolysis. Herein, we successfully prepare a novel Fe,Co-CeO2/CeF3@MXene heterostructure with Fe-Co dual active sites and oxygen vacancies for alkaline OER using an energy-free consumption co-deposition method. Impressively, Fe,Co-CeO2/CeF3@MXene achieves an ultralow overpotential of 192 mV and a long-term stability of 110 h at 10 mA cm-2 without structural changes, thereby outperforming the commercial IrO2 (345 mV). In addition, Fe,Co-CeO2/CeF3@MXene exhibits much superior activity (271 mV) and durability to IrO2 (385 mV) in the real seawater OER. Wind- and solar energy-assisted water electrolysis devices show their promising prospects for sustainable green hydrogen production. Characterization techniques and theoretical calculations reveal that the Fe,Co co-implanted CeO2/CeF3 heterostructure effectively degrades the energy barrier of the OER and optimizes the adsorption strength of *OH, *O, and *OOH intermediates. It exhibits the dual coupling mechanism of the adsorbed evolution and lattice oxygen mechanisms, which synergistically improves the OER performance. This work provides a facile and efficacious strategy for synthesizing a new class of heterostructures to achieve significant enhancement in the activity and stability of OER catalysts.
Collapse
Affiliation(s)
- Yunwei Mao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| |
Collapse
|
5
|
Liu Y, Hu Y, Zhao X, Zhu S, Min Y, Xu Q, Li Q. Oxygen Vacancy and Heterostructure Modulation of Co 2P/Fe 2P Electrocatalysts for Improving Total Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13795-13805. [PMID: 38449335 DOI: 10.1021/acsami.3c19548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Designing a stable and highly active catalyst for hydrogen evolution and oxygen evolution reactions (HER/OER) is essential for the industrialization of hydrogen energy but remains a major challenge. This work reports a simple approach to fabricating coupled Co2P/Fe2P nanorod array catalyst for overall water decomposition, demonstrating the source of excellent activity in the catalytic process. Under alkaline conditions, Co2P/Fe2P heterostructures exhibit an overpotential of 96 and 220 mV for HER and OER, respectively, at 10 mA cm-2. For total water splitting, a low voltage of 1.56 V is required to provide a current density of 10 mA cm-2. And the catalyst exhibits long-term durability for 30 h at a high current density of 250 mA cm-2. The analysis of the results revealed that the presence of interfacial oxygen vacancies and the strong interaction between Co2P/Fe2P provided the catalyst with more electrochemically active sites and a faster charge transfer capability, which improved the hydrolysis dissociation process. Electrochemically active metal (oxygen) hydroxide phases were produced after OER stability testing. The results of this study prove its great potential in practical industrial electrolysis and provide a reasonable and feasible strategy for the design of nonprecious metal phosphide electrocatalysts.
Collapse
Affiliation(s)
- Yue Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yawen Hu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xin Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
6
|
Chen X, Chen J, Qiao Y, Gao Y, Fan S, Liu Y, Li L, Liu Y, Chou S. Facile fabrication of Ni, Fe-doped δ-MnO 2 derived from Prussian blue analogues as an efficient catalyst for stable Li-CO 2 batteries. Chem Sci 2024; 15:2473-2479. [PMID: 38362438 PMCID: PMC10866367 DOI: 10.1039/d3sc05794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Rechargeable Li-CO2 batteries are regarded as an ideal new-generation energy storage system, owing to their high energy density and extraordinary CO2 capture capability. Developing a suitable cathode to improve the electrochemical performance of Li-CO2 batteries has always been a research hotspot. Herein, Ni-Fe-δ-MnO2 nano-flower composites are designed and synthesized by in situ etching a Ni-Fe PBA precursor as the cathode for Li-CO2 batteries. Ni-Fe-δ-MnO2 nanoflowers composed of ultra-thin nanosheets possess considerable surface spaces, which can not only provide abundant catalytic active sites, but also facilitate the nucleation of discharge products and promote the CO2 reduction reaction. On the one hand, the introduction of Ni and Fe elements can improve the electrical conductivity of δ-MnO2. On the other hand, the synergistic catalytic effect between Ni, Fe elements and δ-MnO2 will greatly enhance the cycling performance and reduce the overpotential of Li-CO2 batteries. Consequently, the Li-CO2 battery based on the Ni-Fe-δ-MnO2 cathode shows a high discharge capacity of 8287 mA h g-1 and can stabilize over 100 cycles at a current density of 100 mA g-1. The work offers a promising guideline to design efficient manganese-based catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Xiaoyang Chen
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jian Chen
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yun Gao
- Institute for Carbon Neutralization, College of Chemistry and Materials, Engineering, Wenzhou University Zhejiang 325035 China
| | - Siwei Fan
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yijie Liu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials, Engineering, Wenzhou University Zhejiang 325035 China
| |
Collapse
|
7
|
Soliman I, Basnet B, K. Sahu S, Panthi D, Du Y. Electrical and dielectric characteristics of molybdenum dioxide nanoparticles for high-performance electrocatalysis. Heliyon 2023; 9:e20610. [PMID: 37842567 PMCID: PMC10569991 DOI: 10.1016/j.heliyon.2023.e20610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
As an attempt to improve the catalytic processes in different electrochemical systems, molybdenum dioxide nanoparticles were prepared using the hydrothermal method, and their electrical and dielectric properties were investigated. The nanoparticles were polycrystalline with an orthorhombic structure. AC electrical transport properties of the pressed disc were conducted over a temperature range of 303-423 K and a frequency range of 42-5 × 106 Hz. The AC conductivity follows Jonscher's universal dynamic law, and it has been determined that correlated barrier hopping (CBH) is the primary conduction mechanism. The maximum barrier height (W M ) was found to be 0.92 eV. The low activation energy showed that hopping conduction is the dominant mechanism of transporting current. The dielectric parameters were analyzed using both complex permittivity and complex electric modulus, with a focus on how they vary with temperature and frequency. At relatively high temperatures and low frequencies, the dielectric parameters showed a high-frequency dependence. The dielectric modulus showed that relaxation peaks move towards lower frequency when temperature increases. The dielectric relaxation activation energy, Δ E ω was determined to be 0.31 eV.
Collapse
Affiliation(s)
- Ibrahim Soliman
- College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Bijaya Basnet
- College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
| | - Sulata K. Sahu
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Dhruba Panthi
- Department of Engineering Technology, Kent State University at Tuscarawas, New Philadelphia, OH, 44663, USA
| | - Yanhai Du
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
8
|
Li J, Zhang Q, Zhang J, Wu N, Liu G, Chen H, Yuan C, Liu X. Optimizing electronic structure of porous Ni/MoO 2 heterostructure to boost alkaline hydrogen evolution reaction. J Colloid Interface Sci 2022; 627:862-871. [PMID: 35901565 DOI: 10.1016/j.jcis.2022.07.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Heterostructure engineering is an efficient strategy to synergisticallyimprove electrocatalytic activity. In this work, Ni/MoO2 heterojunction nanorods with porous structure self-supported on nickel foam (NF) are elaborately designed through a facile solution-evaporationmethod followed by a thermal reduction process. Prominently, the optimal electrocatalyst Ni/MoO2@NF-E delivers an exceptionally low overpotential of 19 mV at the current density of 10 mA cm-2 and a small Tafel slope of 52.3 mV dec-1 toward the hydrogen evolution reaction (HER) in alkaline solution. Concurrently, Ni/MoO2@NF-E also maintains excellent stability after 120 h of electrolysis or 5000 cyclic voltammetry cycles. The experimental and density functional theory (DFT) results indicate that the enhanced HER performance of Ni/MoO2@NF-E should be ascribed to the porous structure in the Ni/MoO2 nanorods providing more active catalytic site, the moderate Gibbs free energy of hydrogen adsorption (ΔGH*), as well as strong synergistic effect between Ni and MoO2. This work provides an efficient route for developing HER electrocatalysts in alkaline media.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Qiman Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, PR China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan 250022 PR China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
9
|
Yang M, Ye Z, Iqbal MA, Liang H, Zeng YJ. Progress on two-dimensional binary oxide materials. NANOSCALE 2022; 14:9576-9608. [PMID: 35766429 DOI: 10.1039/d2nr01076c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted much attention because of their unique electronic and optical properties. Since the successful isolation of graphene in 2004, many interesting 2D materials have emerged, including elemental olefins (silicene, germanene, etc.), transition metal chalcogenides, transition metal carbides (nitrides), hexagonal boron, etc. On the other hand, 2D binary oxide materials are an important group in the 2D family owing to their high structural diversity, low cost, high stability, and strong adjustability. This review systematically summarizes the research progress on 2D binary oxide materials. We discuss their composition and structure in terms of vdW and non-vdW categories in detail, followed by a discussion of their synthesis methods. In particular, we focus on strategies to tailor the properties of 2D oxides and their emerging applications in different fields. Finally, the challenges and future developments of 2D binary oxides are provided.
Collapse
Affiliation(s)
- Manli Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Zhixiang Ye
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| |
Collapse
|
10
|
Janus bimetallic materials as efficient electrocatalysts for hydrogen oxidation and evolution reactions. J Colloid Interface Sci 2022; 625:128-135. [PMID: 35716608 DOI: 10.1016/j.jcis.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022]
Abstract
The development of hydrogen energy is limited by the high cost of platinum group metals (PGM). There is an urgent need to design efficient PGM-free electrocatalysts in the hydrogen electrode. Herein, Janus Ni/W bimetallic materials are proposed as an effective PGM-free bifunctional hydrogen electrocatalyst. By constructing the bimetallic materials, a synergistic effect is realized to enhance the reaction kinetics and improve the catalytic performance. In general, Ni can provide excellent Had sites, and W serves as OHad sites. Therefore, the synergistic effect of Ni and W can improve the kinetics of hydrogen evolution reaction and the hydroxide oxidation reaction. Ni/W@NF can obtain the hydrogen evolution reaction current density of 10 mA cm-2 with an overpotential of only 62.6 mV, and the exchange current density of hydroxide oxidation reaction can reach 1.83 mA cm-2. This work provides a new idea for the design of high-efficiency and low-cost PGM-free bifunctional hydrogen electrocatalysts.
Collapse
|
11
|
Yang G, Guo Y, Bo X. Laser-assisted coupling of nitrogen-doped carbon-coated molybdenum/molybdenum dioxide rods for efficient pH-universal hydrogen evolution electrocatalysis. J Colloid Interface Sci 2021; 608:1696-1706. [PMID: 34742084 DOI: 10.1016/j.jcis.2021.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Herein, a simple and fast laser-assisted coupling method is used for preparation of rod-like carbon-coated Mo/MoO2 hybrids at room temperature and air environment. Under high energy of laser and reductive atmosphere caused by precursor decomposition, Mo-polydopamine complex-wrapped MoO3 rods are quickly converted into nitrogen-doped carbon-coated Mo/MoO2 rods. Carbon-coated Mo/MoO2 exhibits high surface area, uniform metal dispersion and appealing hydrogen evolution reaction (HER) catalytic performance in a wide pH range. Carbon-coated Mo/MoO2 shows overpotential of 134, 108 and 164 mV to deliver current density of 10 mA cm-2 under alkaline, acidic and neutral solution, respectively. Theoretical calculation demonstrates that combination of Mo and MoO2 into Mo/MoO2 composite favors the dissociation of water and adsorption of hydrogen. This study not only provides a high-efficiency strategy for preparation of electrocatalysts but also give guidance for development of hybrid electrocatalysts for HER.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yihang Guo
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
12
|
Li X, Xing J, Chen J, Liu C, Qi X. Promoting the Phosphidation Process using an Oxygen Vacancy Precursor for Efficient Hydrogen Evolution Reaction. Chem Asian J 2021; 16:3604-3609. [PMID: 34506068 DOI: 10.1002/asia.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Based on previous works, most of the transition metal phosphides (TMPs) were directly prepared by decomposing NaH2 PO2 with the precursors at high temperatures, which resulted in different degrees of phosphidation in the final product. Therefore, it is necessary to design an innovative approach to enhance the degree of phosphidation in the material using crystal defects. Here, oxygen-vacancy iron oxide/iron foam (Ov-Fe2 O3 /IF) was firstly prepared by generating oxygen vacancy in situ in an iron foam through heating in vacuum conditions. Subsequently, FeP/IF was formed by phosphating Ov-Fe2 O3 /IF. Under the effects of oxygen vacancies, oxygen-vacancy iron oxide could be completely phosphatized to produce more active sites on the surface of the material. This, in turn, could result in a catalyst with exceptional hydrogen evolution activity. Thus, the successful fabrication of FeP/IF demonstrated in this work provides an effective and feasible way for the preparation of other high-efficiency catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jingbo Xing
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Junwei Chen
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chao Liu
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaopeng Qi
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
13
|
Liang W, Dong P, Le Z, Lin X, Gong X, Xie F, Zhang H, Chen J, Wang N, Jin Y, Meng H. Electron Density Modulation of MoO 2/Ni to Produce Superior Hydrogen Evolution and Oxidation Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39470-39479. [PMID: 34433246 DOI: 10.1021/acsami.1c11025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) have aroused great interest, but the high price of platinum group metals (PGMs) limits their development. The electronic reconstruction at the interface of a heterostructure is a promising strategy to enhance their catalytic performance. Here, MoO2/Ni heterostructure was synthesized to provide effective HER in an alkaline electrolyte and exhibit excellent HOR performance. Theoretical and experimental analyses prove that the electron density around the Ni atom is reduced. The electron density modulation optimizes the hydrogen adsorption and hydroxide adsorption free energy, which can effectively improve the activity of both HER and HOR. Accordingly, the prepared MoO2/Ni@NF catalyst reveals robust HER activity (η10 = 50.48 mV) and HOR activity (j0 = ∼1.21 mA cm-2). This work demonstrates an effective method to design heterostructure interfaces and tailor the surface electronic structure to improve HER/HOR performance.
Collapse
Affiliation(s)
- Wanli Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Pengyu Dong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Zhichen Le
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xinyi Lin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xiyu Gong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Hao Zhang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| |
Collapse
|