1
|
Lou J, Li G, Guo X, Li B, Yang D, Zhang H, Wang Z, Tang BZ. Creation of High-Quality Deep-Blue AIE Emitter with a Crossed Long-Short Axis Structure for Efficient and Versatile OLEDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308468. [PMID: 38009497 DOI: 10.1002/smll.202308468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Developing deep-blue emitters for organic light-emitting diodes (OLEDs) is critical but challenging, which requires a good balance between light color, exciton utilization, and photoluminescence quantum yield (PLQY) of solid film. Herein, a high-quality deep-blue emitter, abbreviated 2TriPE-CzMCN, is designed by introducing an aggregation-induced emission (AIE) group into a crossed long-short axis (CLSA) skeleton. Theoretical and experimental investigations reveal that the CLSA molecular design can achieve a balance between deep-blue emission and triplet-excitons utilization, while the high PLQY of the solid film resulting from the AIE feature helps to improve the performance of OLEDs. Consequently, when 2TriPE-CzMCN is used as the emitting dopant, the OLED exhibits a deep-blue emission at 430 nm with a record-high maximum external quantum efficiency (EQE) of 8.84%. When 2TriPE-CzMCN serves as the host material, the sensitized monochrome orange and two-color white OLEDs (WOLEDs) realize high EL performances that exceed the efficiency limit of conventional fluorescent OLEDs. Moreover, high-performance three-color WOLEDs with a color rendering index (CRI) exceeding 90 and EQE up to 18.08% are achieved by using 2TriPE-CzMCN as the blue-emitting source. This work demonstrates that endowing CLSA molecule with AIE feature is an effective strategy for developing high-quality deep-blue emitters, and high-performance versatile OLEDs can be realized through rational device engineering.
Collapse
Affiliation(s)
- Jingli Lou
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ganggang Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Xuecheng Guo
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Baoxi Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Dezhi Yang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Han Zhang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
2
|
Du M, Mai M, Zhang D, Duan L, Zhang Y. Stereo effects for efficient synthesis of orange-red multiple resonance emitters centered on a pyridine ring. Chem Sci 2024; 15:3148-3154. [PMID: 38425532 PMCID: PMC10901515 DOI: 10.1039/d3sc06470k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Despite theoretical difficulties, we herein demonstrate an effective strategy for the inaugural synthesis of an orange-red multiple resonance (MR) emitter centered on a pyridine ring via stereo effects. Compared to conventional benzene-centered materials, the pyridine moiety in the novel MR material acts as a co-acceptor. This results in a significant spectral redshift and a narrower spectrum, as well as an improved photoluminescence quantum yield (PLQY) due to the formation of intramolecular hydrogen bonds. As envisioned, the proof-of-concept emitter Py-Cz-BN exhibits bright orange-red emission peaking at 586 nm with a small full width at half maximum (FWHM) of 0.14 eV (40 nm), exceeding both the wavelength and FWHM achieved with benzene-centered BBCz-Y. Benefiting from high PLQYs (>92%) and suppressed chromophore interactions, the optimized organic light-emitting diodes achieved high maximum external quantum efficiencies of 25.3-29.6%, identical small FWHMs of 0.18 eV (54 nm), and long lifetimes over a wide range of dopant concentrations (1-15 wt%). The performance described above demonstrates the effectiveness of this molecular design and synthesis strategy in constructing high performance long-wavelength MR emitters.
Collapse
Affiliation(s)
- Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Minqiang Mai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
- Applied Mechanics Lab, School of Aerospace Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
3
|
Li G, Xu K, Zheng J, Fang X, Lou W, Zhan F, Deng C, Yang YF, Zhang Q, She Y. High-Performance Ultraviolet Organic Light-Emitting Diodes Enabled by Double Boron-Oxygen-Embedded Benzo[ m]tetraphene Emitters. J Am Chem Soc 2024; 146:1667-1680. [PMID: 38175122 DOI: 10.1021/jacs.3c12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ultraviolet organic light-emitting diodes (UV OLEDs) have attracted increasing attention because of their promising applications in healthcare, industry, and agriculture; however, their development has been hindered by the shortage of robust UV emitters. Herein, we embedded double boron-oxygen units into nonlinear polycyclic aromatic hydrocarbons (BO-PAHs) to regulate their molecular configurations and excited-state properties, enabling novel bent BO-biphenyl (BO-bPh) and helical BO-naphthyl (BO-Nap) emitters with hybridized local and charge-transfer (HLCT) characteristics. They could be facilely synthesized in gram-scale amounts via a highly efficient two-step route. BO-bPh and BO-Nap showed strong UV and violet-blue photoluminescence in toluene with full width at half-maximum values of 25 and 37 nm, along with quantum efficiencies of 98 and 99%, respectively. A BO-bPh-based OLED showed high color purity UV electroluminescence peaking at 394 nm with Commission Internationale de l'Eclairage (CIE) coordinates of (0.166, 0.021). Moreover, the device demonstrated a record-high maximum external quantum efficiency (EQE) of 11.3%, achieved by successful hot exciton utilization. This work demonstrates the promising potential of double BO-PAHs as robust emitters for future UV OLEDs.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianbing Zheng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
4
|
Jiang S, Yu Y, Li D, Chen Z, He Y, Li M, Yang GX, Qiu W, Yang Z, Gan Y, Lin J, Ma Y, Su SJ. Sulfone-Embedded Heterocyclic Narrowband Emitters with Strengthened Molecular Rigidity and Suppressed High-Frequency Vibronic Coupling. Angew Chem Int Ed Engl 2023; 62:e202218892. [PMID: 36815469 DOI: 10.1002/anie.202218892] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Sulfone-embedded heterocyclics are of great interest in organic light-emitting diodes (OLEDs), however, exploring highly efficient narrowband emitters based on sulfone-embedded heterocyclics remains challenging. Herein, five emitters with different sulfur valence state and molecular rigidity, namely tP, tCPD, 2tCPD, tPD and tPT, are thoroughly analysed. With restricted twisting of flexible peripheral phenyl by strengthening molecular rigidity, molecular emission spectra can be enormously narrowed. Further, introducing the sulfone group with bending vibration in low-frequency region that suppresses high-frequency vibration, sharp narrow full-widths at half-maximum of 28 and 25 nm are achieved for 2tCPD and tPD, respectively. Maximum external quantum efficiencies of 22.0 % and 27.1 % are successfully realized for 2tCPD- and tPD-based OLED devices. These results offer a novel design strategy for constructing narrowband emitters by introducing sulfone group into a rigid molecular framework.
Collapse
Affiliation(s)
- Simin Jiang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yue Yu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Zijian Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yanmei He
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Guo-Xi Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Weidong Qiu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Zhihai Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yiyang Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Jianying Lin
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Kang S, Jillella R, Park S, Park S, Kim JH, Oh D, Kim J, Park J. Organic-Inorganic Hybrid Device with a Novel Deep-Blue Emitter of a Donor-Acceptor Type, with ZnO Nanoparticles for Solution-Processed OLEDs. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213806. [PMID: 36364586 PMCID: PMC9654309 DOI: 10.3390/nano12213806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Two new deep-blue emitters with bipolar properties based on an organoboron acceptor and carbazole donor were newly synthesized: 2-(9H-carbazol-9-yl)-5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho [3,2,1-de]anthracen-7-yl)-5H-benzo[b]carbazole (TDBA-BCZ) and 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho [3,2,1-de]anthracen-7-yl)-8-phenyl-5,8-dihydroindolo[2,3-c]carbazole (TDBA-PCZ). The two emitters showed deep-blue and real-blue photoluminescence emission in their solution and film states, respectively. The doped spin-coated films were prepared using synthesized materials and showed a root-mean-square roughness of less than 0.52 nm, indicating excellent surface morphology. The doped devices, fabricated via a solution process using TDBA-BCZ and TDBA-PCZ as the dopants, showed electroluminescence peaks at 428 and 461 nm, corresponding to the Commission Internationale de L'éclairage (CIE) coordinates of (0.161, 0.046) and (0.151, 0.155), respectively. The external quantum efficiency (EQE)/current efficiency (CE) of the solution-processed forward devices, with TDBA-BCZ and TDBA-PCZ as dopants, were 7.73%/8.67 cd/A and 10.58%/14.24 cd/A, respectively. An inverted OLED device fabricated using rod-shaped ZnO nanoparticles as an electron injection layer showed a CE of 1.09 cd/A and an EQE of 0.30%.
Collapse
Affiliation(s)
- Seokwoo Kang
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Raveendra Jillella
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Sunwoo Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Sangshin Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Joo Hwan Kim
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Dakyeung Oh
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Jongwook Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence:
| |
Collapse
|
6
|
Zhang H, Li G, Guo X, Zhang K, Zhang B, Guo X, Li Y, Fan J, Wang Z, Ma D, Tang BZ. High-Performance Ultraviolet Organic Light-Emitting Diode Enabled by High-Lying Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021; 60:22241-22247. [PMID: 34387938 DOI: 10.1002/anie.202108540] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Indexed: 11/05/2022]
Abstract
Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y =0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Xiaomin Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Bing Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Xuecheng Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Yuxuan Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
7
|
Zhang H, Li G, Guo X, Zhang K, Zhang B, Guo X, Li Y, Fan J, Wang Z, Ma D, Tang BZ. High‐Performance Ultraviolet Organic Light‐Emitting Diode Enabled by High‐Lying Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Han Zhang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xiaomin Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics Shandong Normal University Jinan 250014 China
| | - Bing Zhang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Xuecheng Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Yuxuan Li
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology School of Physics and Electronics Shandong Normal University Jinan 250014 China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission AIE Institute Guangzhou International Campus South China University of Technology Guangzhou 510640 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China
| |
Collapse
|