1
|
Menétrey M, Kupferschmid C, Gerstl S, Spolenak R. On the Resolution Limit of Electrohydrodynamic Redox 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402067. [PMID: 39092685 DOI: 10.1002/smll.202402067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s-1) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Cédric Kupferschmid
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Stephan Gerstl
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Shi H, Wang K, Tang S, Zhai S, Shi J, Su C, Liu L. Large Range Atomic Force Microscopy with High Aspect Ratio Micropipette Probe for Deep Trench Imaging. SMALL METHODS 2023:e2300235. [PMID: 37075765 DOI: 10.1002/smtd.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Atomic force microscopy (AFM) has been adopted in both industry and academia for high-fidelity, full-profile topographic characterization. Typically, the tiny tip of the cantilever and the limited traveling range of the scanner restrict AFM measurement to relatively flat samples (recommend 1 µm). The primary objective of this work is to address these limitations using a large-range AFM (measuring height >10 µm) system consisting of a novel repairable high aspect ratio probe (HARP) with a nested-proportional-integral-derivative (nested-PID) AFM system. The HARP is fabricated using a reliable, cost-efficient bench-top process. The tip is then fused by pulling the end of the micropipette cantilever with a length up to hundreds of micrometers and a tip diameter of 30 nm. The design, simulation, fabrication, and performance of the HARP are described herein. This instrument is then tested using polymer trenches which reveals superior image fidelity compared to standard silicon tips. Finally, a nested-PID system is developed and employed to facilitate 3D characterization of 50-µm-step samples. The results demonstrate the efficacy of the proposed bench-top technique for the fabrication of low-cost, simple HAR AFM probes that facilitate the imaging of samples with deep trenches.
Collapse
Affiliation(s)
- Huiyao Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Kaixuan Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Si Tang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shenghang Zhai
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jialin Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| | - Chanmin Su
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| |
Collapse
|
3
|
Sheglov DV, Rogilo DI, Fedina LI, Sitnikov SV, Sysoev EV, Latyshev AV. Bottom-Up Generated Height Gauges for Silicon-Based Nanometrology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12511-12523. [PMID: 36808946 DOI: 10.1021/acsami.2c20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Steady progress in integrated circuit design has forced basic metrology to adopt silicon lattice parameter as a secondary realization of the SI meter that lacks convenient physical gauges for precise surface measurements at a nanoscale. To employ this fundamental shift in nanoscience and nanotechnology, we propose a set of self-organized silicon surface morphologies as a gauge for height measurements within the whole nanoscale (0.3-100 nm) range. Using 2 nm sharp atomic force microscopy (AFM) probes, we have measured the roughness of wide (up to 230 μm in diameter) singular terraces and the height of monatomic steps on the step-bunched and amphitheater-like Si(111) surfaces. For both types of self-organized surface morphology, the root-mean-square terrace roughness exceeds 70 pm but has a little effect on step height measurements having 10 pm accuracy for AFM technique in air. We implement a step-free 230-μm-wide singular terrace as a reference mirror in an optical interferometer to reduce the systematic error of height measurements from >5 nm to about 0.12 nm, which allows visualizing 136-pm-high monatomic steps on the Si(001) surface. Then, using a "pit-patterned" extremely wide terrace with dense but counted monatomic steps in a pit wall, we have optically measured mean Si(111) interplanar spacing (313.8 ± 0.4 pm) that agrees well with the most precise metrological data (313.56 pm). This opens up avenues for the creation of silicon-based height gauges using bottom-up approaches and advances optical interferometry among techniques for metrology-grade nanoscale height measurements.
Collapse
Affiliation(s)
- Dmitry V Sheglov
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev aven. 13, Novosibirsk 630090, Russia
| | - Dmitry I Rogilo
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev aven. 13, Novosibirsk 630090, Russia
| | - Liudmila I Fedina
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev aven. 13, Novosibirsk 630090, Russia
| | - Sergey V Sitnikov
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev aven. 13, Novosibirsk 630090, Russia
| | - Evgeny V Sysoev
- Technological Design Institute of Scientific Instrument Engineering SB RAS, Russkaya str. 41, Novosibirsk 630058, Russia
| | - Alexander V Latyshev
- Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev aven. 13, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
5
|
Glia A, Deliorman M, Qasaimeh MA. 3D Generation of Multipurpose Atomic Force Microscopy Tips. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201489. [PMID: 35853246 PMCID: PMC9507387 DOI: 10.1002/advs.202201489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Indexed: 05/02/2023]
Abstract
In this work, 3D polymeric atomic force microscopy (AFM) tips, referred to as 3DTIPs, are manufactured with great flexibility in design and function using two-photon polymerization. With the technology holding a great potential in developing next-generation AFM tips, 3DTIPs prove effective in obtaining high-resolution and high-speed AFM images in air and liquid environments, using common AFM modes. In particular, it is shown that the 3DTIPs provide high-resolution imaging due to their extremely low Hamaker constant, high speed scanning rates due to their low quality factor, and high durability due to their soft nature and minimal isotropic tip wear; the three important features for advancing AFM studies. It is also shown that refining the tip end of the 3DTIPs by focused ion beam etching and by carbon nanotube inclusion substantially extends their functionality in high-resolution AFM imaging, reaching angstrom scales. Altogether, the multifunctional capabilities of 3DTIPs can bring next-generation AFM tips to routine and advanced AFM applications, and expand the fields of high speed AFM imaging and biological force measurements.
Collapse
Affiliation(s)
- Ayoub Glia
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
| | | | - Mohammad A. Qasaimeh
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
| |
Collapse
|
6
|
Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomater 2021; 128:21-41. [PMID: 33905945 DOI: 10.1016/j.actbio.2021.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022]
Abstract
Electrohydrodynamic Jet 3D Printing (e-jetting) is a promising technique developed from electrospinning, which enables precise fiber deposition in a layer-by-layer fashion with customized designs. Several studies have verified that e-jetted scaffolds were able to support cell attachment, proliferation, and extracellular matrix formation, as well as cell infiltration into the scaffold due to the well-defined pores. Besides, e-jetting has also been combined with other techniques to incorporate biomaterials (e.g., hydrogels and cell spheroids) that could not be e-jetted, to promote the biological performance of the scaffold. In the recent decade, applying e-jetting in the fabrication of tissue-engineered scaffolds has drawn a lot of interest. Moreover, efforts have been put to develop varied scaffolds for some specific biomedical applications such as cartilage, tendon, and blood vessel, which exhibited superior mechanical properties and promoted cell behaviors including cellular alignment and differentiation. This review article also provides the reader with some crucial considerations and major limitations of e-jetting, such as scaffold design, printability of large-scale constructs, applicable biomaterials, and cell behaviors. Overall, this review article expounds on perspectives in the context of development and biomedical applications of this technique. STATEMENT OF SIGNIFICANCE: E-jetting technique is able to produce fibers with diameter in micrometer scale, which has been considered as a promising 3D printing technique. This technique has shown promise for regeneration of tissue engineered scaffolds with well-defined structures, which has been reported to apply in regeneration of different tissue types. The superior controllability of the process endows the feasibility of constructing multi-scale scaffolds with great biological mimicry and cellular infiltration. The incorporation of other biomaterials into the e-jetted networks further reinforces the scope of applications as compared to e-jetted scaffolds only. There is no doubt that e-jetting will be a great tool for tissue engineered scaffolding, and this review article will give overall perspectives in this topic.
Collapse
|