1
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
2
|
Khalaji-Verjani M, Masteri-Farahani M. Designing a hybrid nanomaterial based on Cr-containing polyoxometalate and graphene oxide as an electrocatalyst for the hydrogen evolution reaction. Dalton Trans 2024; 53:6920-6931. [PMID: 38563196 DOI: 10.1039/d4dt00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A new polyoxometalate (POM)-based hybrid nanomaterial (denoted as PMo11-Cr-mGO) was designed via covalent interaction between the Cr(acac)3 complex and [PMo11O39]7- followed by immobilization on the surface of modified graphene oxide (mGO). The prepared nanomaterial was characterized using a series of physicochemical techniques. X-ray diffraction (XRD), Raman analysis, transmission electron microscopy (TEM), and FE-SEM-EDS revealed the preservation of layered GO during the formation of the desired hybrid nanomaterial. Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and elemental analysis confirmed the immobilization of POM (PMo11-Cr) on the surface of mGO and the formation of PMo11-Cr-mGO. In order to evaluate the performance of PMo11-Cr-mGO in the hydrogen evolution reaction (HER), electrochemical measurements were also performed. The resulting PMo11-Cr-mGO exhibited excellent HER activities with a low overpotential of 153 mV at 10 mA cm-2 and good durability in acidic media, thus emerging as one of the most efficient POM-based electrocatalysts.
Collapse
|
3
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Dagar M, Brennessel WW, Matson EM. Elucidation of Design Criteria for V-based Redox Mediators: Structure-Function Relationships that Dictate Rates of Heterogeneous Electron Transfer. Chemistry 2024:e202400764. [PMID: 38574277 DOI: 10.1002/chem.202400764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Redox mediators are attractive solutions for addressing the stringent kinetic stipulations required for efficient energy conversion processes. In this work, we compare the electrochemical properties of four vanadium complexes, namely [V(acac)3], [V6O7(OMe)12], [nBu4N]3[V6O13(TRISNO2)2], and [nBu4N]5[V18O46(NO3)] in non-aqueous solutions on glassy carbon electrodes. The goal of this study is to investigate the electron transfer kinetics and diffusivity of these compounds under identical experimental conditions to develop an understanding of structure-function relationships that dictate the physicochemical properties of vanadium oxide assemblies. Complex selection was dictated by two criteria - (1) nuclearity of the transition metal complexes (2) distribution of electron density in the native electronic configuration. Our analyses establish that electronic communication between metal centers significantly impacts charge transfer kinetics of these vanadium-based compounds.
Collapse
Affiliation(s)
- Mamta Dagar
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA
| | | | - Ellen M Matson
- University of Rochester, Department of Chemistry, Rochester, NY 14627, USA
| |
Collapse
|
5
|
Patra A, Pramoda K, Hegde S, K A, Mosina K, Sofer Z, Rout CS. Electrostatic co-assembly of FePS 3 nanosheets and surface functionalized BCN heterostructures for hydrogen evolution reaction. Dalton Trans 2024. [PMID: 38258579 DOI: 10.1039/d3dt03222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Advances in the hydrogen evolution reaction (HER) are intricately connected with addressing the current energy crisis and quest for sustainable energy sources. The necessity of catalysts that are efficient and inexpensive to perform the hydrogen evolution reaction is key to this. Following the ground-breaking discovery of graphene, metal thio/seleno phosphates (MPX3: M - transition metal, P - phosphorus and X - S/Se), two dimensional (2D) materials, exhibit excellent tunable physicochemical, electronic and optical properties, and are expected to be key to the energy industry for years to come. Taking this into account, a facile time-effective electrostatic restacking synthesis procedure has been followed to synthesize a 2D/2D heterostructure (FePS3@BCN) involving FePS3, one of the prominent MPX3 materials, with borocarbonitride (BCN), for hydrogen evolution reaction (HER). The piled up nanosheets of FePS3 and BCN are held together by an electrostatic force, and display extreme robustness under the harsh conditions of HER application. The amalgamated electrocatalyst achieved an overpotential of 187 mV at a current density of 10 mA cm-2 with a shallow Tafel slope of 41 mV dec-1, following the Volmer-Heyrovsky mechanism. The resilience of the electrocatalyst has been examined through chronoamperometric testing for long term stability, and it is stable for more than 14 hours, which shows the excellent electrocatalytic activity for hydrogen evolution reaction owing to the strategic approach to the catalyst design, the use of numerous electrochemically active sites, large surface area and a barrier-free channel for quick ion transfer.
Collapse
Affiliation(s)
- Abhinandan Patra
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| | - K Pramoda
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| | - Shridhar Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| | - Aravind K
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| | - Kseniia Mosina
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| |
Collapse
|
6
|
Yang Y, Liu L, Chen S, Yan W, Zhou H, Zhang XM, Fan X. Tuning Binding Strength of Multiple Intermediates towards Efficient pH-universal Electrocatalytic Hydrogen Evolution by Mo 8 O 26 -NbN x O y Heterocatalysts. Angew Chem Int Ed Engl 2023; 62:e202306896. [PMID: 37747767 DOI: 10.1002/anie.202306896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Developing efficient and robust hydrogen evolution reaction (HER) catalysts for scalable and sustainable hydrogen production through electrochemical water splitting is strategic and challenging. Herein, heterogeneous Mo8 O26 -NbNx Oy supported on N-doped graphene (defined as Mo8 O26 -NbNx Oy /NG) is synthesized by controllable hydrothermal reaction and nitridation process. The O-exposed Mo8 O26 clusters covalently confined on NbNx Oy nanodomains provide a distinctive interface configuration and appropriate electronic structure, where fully exposed multiple active sites give excellent HER performance beyond commercial Pt/C catalyst in pH-universal electrolytes. Theoretical studies reveal that the Mo8 O26 -NbNx Oy interface with electronic reconstruction affords near-optimal hydrogen adsorption energy and enhanced initial H2 O adsorption. Furthermore, the terminal O atoms in Mo8 O26 clusters cooperate with Nb atoms to promote the initial H2 O adsorption, and subsequently reduce the H2 O dissociation energy, accelerating the entire HER kinetics.
Collapse
Affiliation(s)
- Yang Yang
- College of Materials Science and Engineering, College of Chemistry, Key Laboratary of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Lijia Liu
- Department of Chemistry, University of Western Ontario, London, Ontario, N6 A 5B7, Canada
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Wenjun Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Xian-Ming Zhang
- College of Materials Science and Engineering, College of Chemistry, Key Laboratary of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiujun Fan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China
| |
Collapse
|
7
|
Xu W, Zhang Y, Xu X, Chen J. Construction of Mo-Based p-n Heterojunction with Enhanced Oxidase-Mimic Activity for AOPs and Antibiofouling. Inorg Chem 2023; 62:14773-14781. [PMID: 37639519 DOI: 10.1021/acs.inorgchem.3c02249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Advanced oxidation processes (AOPs) are efficient methods to remove poisonous organic pollutants from water. But in AOPs, additional radical providers, such as H2O2, persulfate, and permonosulfate, are indispensable, which not only add the risk of secondary pollution but also increase cost and complexity in operation. To resolve this problem, nanozymes with oxidase-mimic activity are a prospective choice, which can convert O2 in the air to ·OH and degrade organic pollutants. Here, CoMoO4/MoS2, a nanozyme with excellent oxidase-mimic activity, is synthesized. In the structure, the p-n heterojunction generates between p-type CoMoO4 and n-type MoS2. Energy band analysis and theoretical calculations suggest the p-n heterojunction intensifies adsorption toward O2, which improves oxidase-mimic activity. This facilitates the generation of ·OH and improves organic pollutant degradation performance with AOPs. Furthermore, CoMoO4/MoS2 also exhibits an antibiofouling ability due to the existence of ·OH. This work clarifies the connection between the structure and oxidase-mimic activity for nanozymes with the p-n heterojunction. More importantly, a new AOP without additional radical providers is developed based on oxidase-mimic activity.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Yifei Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
- Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
8
|
Zeb Z, Huang Y, Chen L, Zhou W, Liao M, Jiang Y, Li H, Wang L, Wang L, Wang H, Wei T, Zang D, Fan Z, Wei Y. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Arumugam M, Koutavarapu R, Seralathan KK, Praserthdam S, Praserthdam P. Noble metals (Pd, Ag, Pt, and Au) doped bismuth oxybromide photocatalysts for improved visible light-driven catalytic activity for the degradation of phenol. CHEMOSPHERE 2023; 324:138368. [PMID: 36905999 DOI: 10.1016/j.chemosphere.2023.138368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The doping of noble metals onto the semiconductor metal oxides has a great impact on the intrinsic properties of the materials. This present work reports the synthesis of noble metals doped BiOBr microsphere by a solvothermal method. The various characteristic findings reveal the effective incorporation of Pd, Ag, Pt, and Au onto the BiOBr and the performance of synthesized samples was test for the degradation of phenol over visible light. The Pd-doped BiOBr material showed enhanced phenol degradation efficacy, which is ∼4-fold greater than pure BiOBr. This improved activity was on reason of good photon absorption, lower recombination rate, and higher surface area facilitated by surface plasmon resonance. Moreover, Pd-doped BiOBr sample displayed good reusability and stability after 3 cycles of run. A plausible charge transfer mechanism for phenol degradation is disclosed in detail over Pd-doped BiOBr sample. Our findings disclose that the incorporation of noble metal as the electron trap is a feasible approach to enhance visible light activity of BiOBr photocatalyst used in phenol degradation. This work represents new vision interested in the outline and development of noble metal doped semiconductor metal oxides as a visible light material for the elimination of colorless toxins from untreated wastewater.
Collapse
Affiliation(s)
- Malathi Arumugam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Xu W, Zhang X, Xu X, Chen J, Wang Q. Guest Molecule Insertion-Optimized d-Band Center Position in MoS 2 with Improved Sulfite Activation Ability Inspired by Sulfite Oxidase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13042-13051. [PMID: 36867742 DOI: 10.1021/acsami.2c22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a prospective member in the family of advanced oxidation processes (AOPs), heterogeneous sulfite activation shows low cost and high safety for poisonous organic pollutants' degradation. To obtain an efficient sulfite activator, sulfite oxidase (SuOx), a molybdenum-based enzyme that can prompt oxidation and activation of sulfite, inspired us greatly. Based on the structure of SuOx, MoS2/BPE (BPE = 1, 2-bis-(4-pyridyl)-ethylene) is synthesized successfully. In MoS2/BPE, the BPE molecule is inserted between the MoS2 layers as a pillar and the N atom links with Mo4+ directly. MoS2/BPE shows excellent SuOx mimic activity. Theoretical calculation implies that BPE insertion optimizes the d-band center position of MoS2/BPE, which regulates the interaction between MoS2 and *SO42-. This prompts •SO4- generation and organic pollutants' degradation. At pH 7.0, its tetracycline degradation efficiency achieved is 93.9% in 30 min. Furthermore, its sulfite activation ability also endows MoS2/BPE with excellent antibiofouling performance because •SO4- can kill the microorganisms in water effectively. This work develops a new sulfite activator based on SuOx. The connection between structure and SuOx mimic activity and sulfite activation ability is clarified in detail.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
- Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
11
|
Wang L, Zeng Y, Huang A, Zhang S. Construction of oxygen defects in V2O5 for improved performance in Zn-ion battery and sea water desalination. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Cui X, Sun Y, Xu X. Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved HER. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lee TL, Elewa AM, Kotp MG, Chou HH, El-Mahdy AFM. Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chem Commun (Camb) 2021; 57:11968-11971. [PMID: 34704990 DOI: 10.1039/d1cc04551b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of two carbazole-thiophene-based conjugated microporous polymers (Cz-3Th and Cz-4Th CMPs) with different degrees of planarity for photocatalytic hydrogen evolution from water. Depending upon the building linker's planarity, we found that the porous structure, hydrogen-evolution rate, and photocatalytic stability of the resultant CMPs varied.
Collapse
Affiliation(s)
- Tsung-Lin Lee
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Mohammed G Kotp
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
14
|
Zhou Z, Ng YH, Xu S, Yang S, Gao Q, Cai X, Liao J, Fang Y, Zhang S. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37299-37307. [PMID: 34324293 DOI: 10.1021/acsami.1c11776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A copper (Cu) material is catalytically active for formaldehyde (HCHO) dehydrogenation to produce H2, but the unsatisfactory efficiency and easy corrosion hinder its practical application. Alloying with other metals and coating a carbon layer outside are recognized as effective strategies to improve the catalytic activity and the long-term durability of nonprecious metal catalysts. Here, highly dispersed CuNi alloy-carbon layer core-shell nanoparticles (CuNi@C) have been developed as a robust catalyst for efficient H2 generation from HCHO aqueous solution at room temperature. Under the optimized reaction conditions, the CuNi@C catalyst exhibits a H2 evolution rate of 110.98 mmol·h-1·g-1, which is 1.5 and 4.9 times higher than those of Cu@C and Ni@C, respectively, which ranks top among the reported nonprecious metal catalysts for catalytic HCHO reforming at room temperature to date. Furthermore, CuNi@C also displays excellent stability toward the catalytic HCHO reforming into H2 in tap water owing to the well-constructed carbon sheath protecting CuNi nanocrystals from oxidation in an alkaline medium. Combined with density functional theory calculations, the superior catalytic efficiency of CuNi@C for H2 generation results from the synergistic contribution between the massive active species from HCHO decomposition on the Cu sites and the remarkable H2 evolution activity on Ni sites. The improved performance of CuNi@C highlights the enormous potential of advancing noble-metal-free nanoalloys as cost-effective and recyclable catalysts for energy recovery from industrial HCHO wastewater.
Collapse
Affiliation(s)
- Zining Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Shengju Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Siyuan Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Qiongzhi Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
| | - Jihai Liao
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510643, Guangdong, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510643, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510643, Guangdong, China
| |
Collapse
|