1
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Wang Z, Chen X, Yu L, Guo S, Hu Y, Huang Y, Wang S, Qi J, Han C, Ma X, Zhang X, Dong H, Chen W, Li L, Hu W. Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic Semiconductors for Photostable Organic Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13584-13592. [PMID: 35286804 DOI: 10.1021/acsami.1c23994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photoelectric response of organic field-effect transistors (OFETs) will cause severe photoelectric interference, which hinders the applications of OFETs in the light environment. It is highly challenging to relieve this problem because of the high photosensitivity of most organic semiconductors. Here, we propose an efficient "exciton-polaron quenching" strategy to suppress the photoelectric response and thus construct highly photostable OFETs by utilizing a polymer electrolyte dielectric─poly(acrylic acid) (PAA). This dielectric produces high-density polarons in organic semiconductors under a gate electric field that quench the photogenerated excitons with high efficiency (∼70%). As a result, the OFETs with PAA dielectric exhibit unprecedented photostability against strong light irradiation up to 214 mW/cm2, which far surpasses the reported values and solar irradiance value (∼138 mW/cm2). The strategy shows high universality in OFETs with different OSCs and electrolytes. As a demonstration, the photostable OFET can stably drive an organic light-emitting diode (OLED) under light irradiation. This work presents an efficient exciton modulation strategy in OSC and proves a high potential in practical applications.
Collapse
Affiliation(s)
- Zhongwu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Li Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Shujing Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yinan Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Shuguang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jiannan Qi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Cheng Han
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
5
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
6
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
7
|
Li X, Li J, Wang X, Wu L, Wang Y, Maestri G, Malacria M, Liu X. Photoelectric properties of aromatic triangular tri-palladium complexes and their catalytic applications in the Suzuki-Miyaura coupling reaction. Dalton Trans 2021; 50:11834-11842. [PMID: 34369501 DOI: 10.1039/d1dt01597d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The photoelectric properties and catalytic activities of substituted triphenylphosphine and sulfur/selenium ligand supported aromatic triangular tri-palladium complexes 1-4, abbreviated as [Pd3]+, were investigated. The cyclic voltammogram of [Pd3]+ in CH3CN-nBu4NPF6 showed a single quasi-reversible wave which was consistent with their robust property and provided preliminary proof for their electron transfer processes in catalysis. With excitation at 267 nm, [Pd3]+ exhibited strong ratiometric fluorescence at 550 and 780 nm at a temperature gradient from 77 K to 287 K. These peculiar triangular tri-palladium complexes showed excellent catalytic activities and exclusive reactivity with aryl iodides over the other halogenated aromatics in the Suzuki-Miyaura coupling reaction. The electronic and steric hindrance effects of substituents on the aryl iodides and aryl boronic acids including heteroaromatics like pyridine, pyrazine and thiophenes were explored and most substrates achieved up to 99% of yields. (2-[1,1'-Biphenyl]-2-ylbenzothiazole) which was analogous to the selective cyclooxygenase-2 (COX-2) inhibitors was also synthesized with our tri-palladium catalyst and gave good isolated yield (94%). The study of the catalytic process revealed that the mechanism of the reaction may involve the replacement of the sulphur ligand on [Pd3]+ by iodine from aryl iodides, which was beneficial for the matching of C-I bond energy.
Collapse
Affiliation(s)
- Xujun Li
- Department of chemistry and chemical engineering, Liaocheng University, 252059, Liaocheng, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Easley AD, Ma T, Eneh CI, Yun J, Thakur RM, Lutkenhaus JL. A practical guide to quartz crystal microbalance with dissipation monitoring of thin polymer films. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra D. Easley
- Department of Materials Science and Engineering Texas A&M University College Station Texas USA
| | - Ting Ma
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| | - Chikaodinaka I. Eneh
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| | - Junyeong Yun
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| | - Ratul M. Thakur
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| | - Jodie L. Lutkenhaus
- Department of Materials Science and Engineering Texas A&M University College Station Texas USA
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| |
Collapse
|