1
|
Zhou X, Xu B, Zhao X, Lv H, Qiao D, Peng X, Shi F, Chen M, Hao Q. In Situ Growth Method for Large-Area Flexible Perovskite Nanocrystal Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3550. [PMID: 39063842 PMCID: PMC11278859 DOI: 10.3390/ma17143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Metal halide perovskites have shown unique advantages compared with traditional optoelectronic materials. Currently, perovskite films are commonly produced by either multi-step spin coating or vapor deposition techniques. However, both methods face challenges regarding large-scale production. Herein, we propose a straightforward in situ growth method for the fabrication of CsPbBr3 nanocrystal films. The films cover an area over 5.5 cm × 5.5 cm, with precise thickness control of a few microns and decent uniformity. Moreover, we demonstrate that the incorporation of magnesium ions into the perovskite enhances crystallization and effectively passivates surface defects, thereby further enhancing luminous efficiency. By integrating this approach with a silicon photodiode detector, we observe an increase in responsivity from 1.68 × 10-2 A/W to 3.72 × 10-2 A/W at a 365 nm ultraviolet wavelength.
Collapse
Affiliation(s)
- Xingting Zhou
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
| | - Bin Xu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
| | - Xue Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
| | - Hongyu Lv
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
| | - Dongyang Qiao
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; (D.Q.); (F.S.)
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Xing Peng
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; (D.Q.); (F.S.)
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Feng Shi
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; (D.Q.); (F.S.)
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; (D.Q.); (F.S.)
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China (H.L.); (Q.H.)
| |
Collapse
|
2
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
3
|
Jiang H, Zhao Y, Liu F, Yan Y, Ma Y, Bao H, Wu Z, Cong WY, Lu YB. Mono- and Co-Doped Mn-Doped CsPbCl 3 Perovskites with Enhanced Doping Efficiency and Photoluminescent Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5545. [PMID: 37629836 PMCID: PMC10456559 DOI: 10.3390/ma16165545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
To investigate the effect of Mn and other metal dopants on the photoelectronic performance of CsPbCl3 perovskites, we conducted a series of theoretical analyses. Our findings showed that after Mn mono-doping, the CsPbCl3 lattice contracted and the bonding strength increased, resulting in a more compact structure of the metal octahedral cage. The relaxation of the metal octahedral cage, along with the Jahn-Teller effect, results in a decrease in lattice strain between the octahedra and a reduction in the energy of the entire lattice due to the deformation of the metal octahedron. These three factors work together to reduce intrinsic defects and enhance the stability and electronic properties of CsPbCl3 perovskites. The solubility of the Mn dopant is significantly increased when co-doped with Ni, Fe, and Co dopants, as it compensates for the lattice strain induced by Mn. Doping CsPbCl3 perovskites reduces the band gap due to the decreased contributions of 3d orbitals from the dopants. Our analyses have revealed that strengthening the CsPbCl3 lattice and reducing intrinsic defects can result in improved stability and PL properties. Moreover, increasing Mn solubility and decreasing the bandgap can enhance the PLQY of orange luminescence in CsPbCl3 perovskites. These findings offer valuable insights for the development of effective strategies to enhance the photoelectronic properties of these materials.
Collapse
Affiliation(s)
- Hao Jiang
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Yiting Zhao
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Fangchao Liu
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Yongqi Yan
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Yinuo Ma
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Hexin Bao
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Zhongchen Wu
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
- Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China
| | - Wei-Yan Cong
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| | - Ying-Bo Lu
- School of Space Science and Physics, Shandong University, Weihai 264209, China; (H.J.); (Y.Z.); (F.L.); (Y.Y.); (Y.M.); (H.B.); (Z.W.); (W.-Y.C.)
| |
Collapse
|
4
|
Du L, Shi X, Duan M, Shi Y. Pressure-Induced Tunable Charge Carrier Dynamics in Mn-Doped CsPbBr 3 Perovskite. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6984. [PMID: 36234324 PMCID: PMC9571311 DOI: 10.3390/ma15196984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
All-inorganic perovskite materials (CsPbX3) have attracted increasing attention due to their excellent photoelectric properties and stable physical and chemical properties. The dynamics of charge carriers affect the photoelectric conversion efficiencies of perovskite materials. Regulating carrier dynamics by changing pressure is interesting with respect to revealing the key microphysical processes involved. Here, ultrafast spectroscopy combined with high-pressure diamond anvil cell technology was used to study the generation and transfer of photoinduced carriers of a Mn-doped inorganic perovskite CsPbBr3 material under pressure. Three components were obtained and assigned to thermal carrier relaxation, optical phonon-acoustic phonon scattering and Auger recombination. The time constants of the three components changed under the applied pressures. Our experimental results show that pressure can affect the crystal structure of Mn-doped CsPbBr3 to regulate carrier dynamics. The use of metal doping not only reduces the content of toxic substances but also improves the photoelectric properties of perovskite materials. We hope that our study can provide dynamic experimental support for the exploration of new photoelectric materials.
Collapse
Affiliation(s)
- Luchao Du
- Correspondence: (L.D.); (Y.S.); Tel.: +86-17767769265 (L.D.)
| | | | | | - Ying Shi
- Correspondence: (L.D.); (Y.S.); Tel.: +86-17767769265 (L.D.)
| |
Collapse
|
5
|
Fluorescence-based monitoring of the pressure-induced aggregation microenvironment evolution for an AIEgen under multiple excitation channels. Nat Commun 2022; 13:5234. [PMID: 36068224 PMCID: PMC9448794 DOI: 10.1038/s41467-022-32968-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
The development of organic solid-state luminescent materials, especially those sensitive to aggregation microenvironment, is critical for their applications in devices such as pressure-sensitive elements, sensors, and photoelectric devices. However, it still faces certain challenges and a deep understanding of the corresponding internal mechanisms is required. Here, we put forward an unconventional strategy to explore the pressure-induced evolution of the aggregation microenvironment, involving changes in molecular conformation, stacking mode, and intermolecular interaction, by monitoring the emission under multiple excitation channels based on a luminogen with aggregation-induced emission characteristics of di(p-methoxylphenyl)dibenzofulvene. Under three excitation wavelengths, the distinct emission behaviors have been interestingly observed to reveal the pressure-induced structural evolution, well consistent with the results from ultraviolet-visible absorption, high-pressure angle-dispersive X-ray diffraction, and infrared studies, which have rarely been reported before. This finding provides important insights into the design of organic solid luminescent materials and greatly promotes the development of stimulus-responsive luminescent materials.
Collapse
|
6
|
Li M, Xu J, Song Y, Chen F. Enhance luminescence or change morphology: effect of the doping method on Cu 2+-doped CsPbBr 3 perovskite nanocrystals. CrystEngComm 2022. [DOI: 10.1039/d2ce01302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of Cu2+ on CsPbBr3 nanocrystals is compared between the hot-injection method and postsynthetic cation-exchange reaction.
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| |
Collapse
|
7
|
Xing K, Cao S, Yuan X, Zeng R, Li H, Zou B, Zhao J. Thermal and photo stability of all inorganic lead halide perovskite nanocrystals. Phys Chem Chem Phys 2021; 23:17113-17128. [PMID: 34346439 DOI: 10.1039/d1cp02119b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inorganic lead halide perovskite (ILHP) nanocrystals (NCs) show great potential in solid state lighting and next generation display technology due to their excellent optical properties. However, almost all ILHP NCs are still facing the problem of unstable luminescence properties caused by heating and/or UV illumination. Further improving the thermal and photo stability of ILHP NCs has become the most urgent challenge for their practical application. This Perspective review specifically focuses on the thermal and photo stability of ILHP NCs, discusses and analyzes the factors that affect the thermal and photo stability of ILHP NCs from the perspective of surface ligands and structure composition, summarizes the current strategies to improve the thermal and photo stability of ILHP NCs, and presents the key challenges and perspectives on the research for the improvement of thermal and photo stability of ILHP NCs.
Collapse
Affiliation(s)
- Ke Xing
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | | | | | | | | | | | | |
Collapse
|